Advertisement

Relaxation Times of Organic Radicals and Transition Metal Ions

  • Sandra S. Eaton
  • Gareth R. Eaton
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)

Abstract

Review of electron spin relaxation times for organic radicals and transition metal ions in magnetically dilute samples. Emphasis is placed on studies that have been performed as a function of temperature and that provide insight into the relaxation processes.

Keywords

Electron Paramagnetic Resonance Spin Diffusion Nitroxyl Radical Saturation Recovery Spectral Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablart, G. and Pescia, J., (1980) Magnetic field dependence of spin-lattice relaxation in three iron group salts. Phys. Rev. B 22, 1150–1162.Google Scholar
  2. Abragam, A. (1961) The Principles of Nuclear Magnetism. Oxford University Press, London.Google Scholar
  3. Abragam, A., and Bleaney, B. (1970) Electron Paramagnetic Resonance of Transition Ions. Oxford University Press, London.Google Scholar
  4. Alm, J. S., Kitagawa, T., Kanematsu, Y., Nishikawa, Y., and Kushida, T., (1995). Glass transition of Zn-substituted myoglobin probed by absorption and site-selective fluorescence spectroscopies. J. Luminesc. 64, 81–86.Google Scholar
  5. Aime, S., Barge, A., Borel, A., Botta, M., Chemerisov, S., Merbach, A. E., Müller, U., and Pubanz, D. (1997) A Multinuclear NMR Study on the Structure and Dynamics of Lanthanide(III) Complexes of the Poly(amino carboxylate) EGTA4- in Aqueous Solution. Inorg. Chem. 36, 5104–5112.Google Scholar
  6. Aleksandrov, I. V., and Zhidomirov, G. M. (1961) Calculation of the Spin-Lattice Relaxation Time for Radicals in Molecular Crystals. J. Exptl. Theoret. Phys. USSR 41, 127–132.Google Scholar
  7. Aleksandrov, I. V., and Zhidomirov, G. M. (1961) Calculation of the Spin-Lattice Relaxation Time for Radicals in Molecular Crystals. Soy. Phys. JETP Engl. Transi. 14, 94 (1962).Google Scholar
  8. Allam, L., Ablart, G., Pescia, J., Clement, S., and Renard, J. P. (1989) Effect of diamagnetic doping on the magnetic resonance in a quasi-one-dimensional system tetramethylammonium manganese trichloride. Phys. Rev. B 40, 8654–8665.Google Scholar
  9. Allen, J. P., Colvin, J. T., Stinson, D. G., Flynn, C. P., and Stapleton, H. J. (1982) Protein conformation from electron spin relaxation data. Biophys. J. 38, 299–310.PubMedCentralPubMedGoogle Scholar
  10. Altenbach, C., Froncisz, W., Hyde, J. S., and Hubbell, W. L. (1989) Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron paramagnetic resonance. Biophys. J. 56, 1183–1191.PubMedCentralPubMedGoogle Scholar
  11. Al’tshuler, S. A. and Kozyrev, B. M. (1974) Electron Paramagnetic Resonance in Compounds of Transition Elements, 2nd ed., Halsted-Wiley, Jerusalem.Google Scholar
  12. Al’tshuler, S. A., Kirmse, R., and Solov’ev, B. V. (1975) Spin-lattice relaxation of exchange-coupled Cu2+-Cu2+ pairs and single Cue+ ions in crystals of zinc(II) bis(diethyldithiocarbamate). J. Phys. C: Solid State Phys. 8, 1907–1920.Google Scholar
  13. Aminov, L. K., Kurkin, I. N., and Lukoyanov, D. A. (1998) Some Peculiarities of Spin-Lattice Relaxation of Impurity Rare-Earth Ions in Crystals, Caused by the Structure Defects. Appl. Magn. Reson. 14, 447–456.Google Scholar
  14. Anderson, P. W. (1958) Absence of Diffusion in Certain Random Lattices. Phys. Rev. 109, 1492–1505.Google Scholar
  15. Andreozzi, L., Faetti, M., Hvala, M., and Giordana, M. (1999) Short-time rotational relaxation in supercooled and glassy o-terphenyl: a nonlinear electron spin resonance study by using molecular probes with different symmetries. Philosph. Mag. B 79, 1993–2003.Google Scholar
  16. Angelone, R., Forte, C., and Pinzino, C. (1993) Relaxation Time Measurements by Longitudinally Modulated ENDOR Spectroscopy on Irradiated L-Alanine Single Crystals. J. Magn. Reson. A 101, 16–22.Google Scholar
  17. Antholine, W. E., Hyde, J. S., and Swartz, H. M. (1978) Use of Dy3+ as a Free Radical Relaxing Agent in Biological Tissues. J. Magn. Reson. 29, 517–522.Google Scholar
  18. Asano, A., and Takegoshi, K. (1998). Polymer Blends and Miscibility, in Solid State NMR of Polymers, I. Ando and T. Asakura, eds., Elsevier, Amsterdam.Google Scholar
  19. Ashikawa, I, Yin, J.-J., Subczynski, W. K., Kouyama, T., Hyde, J. S., Kusumi, A. (1994) Molecular Organization and Dynamics in Bacteriorhodopsin-Rich Reconstituted Membranes: Discrimination of Lipid Environments by the Oxygen Transport Parameter Using a Pulse ESR Spin-Labeling Technique. Biochem. 33, 4947–4952.Google Scholar
  20. Askew, T. R., Muench, P. J., Stapleton, H. J., and Brower, K. L. (1984) Electron Paramagnetic Resonance and Relaxation of Amorphous Silicon Below 1 K. Solid State Commun. 49, 667–670.Google Scholar
  21. Atherton, N. W. (1993) Principles of Electron Spin Resonance, Prentice Hall, New York, ch. 1.Google Scholar
  22. Atkins, P. W. (1972) Spin-Rotation Interaction, in Electron Spin Relaxation in Liquids, L. T. Muus and P. W. Atkins, eds., Plenum, New York.Google Scholar
  23. Atkins, P. W. and Kivelson, D. (1966) ESR Linewidths in Solution. II. Analysis of Spin-Rotational Relaxation Data. J. Chem. Phys. 44, 169–174.Google Scholar
  24. Atsarkin, V. A. (1966) On the Mechanism of Paramagnetic Spin-Lattice Relaxation at Low Temperatures. Soviet Phys. JETP 22, 106–113.Google Scholar
  25. Atsarkin, V. A., Demidov, V. V., and Vasneva, G. A. (1997) Metal-insulator transition in RbC60 polymer fulleride studied by ESR and electron-spin relaxation, Phys. Rev. B 56, 9448–9453.Google Scholar
  26. Atsarkin, V. A., Demidov, V. V., and Vasneva, G. A. (1998) Electron Spin-Lattice Relaxation in Noncommon Metals Yba2Cu3Ox and Rb1C60. Appl. Magn. Reson. 15, 323–331.Google Scholar
  27. Bacci, M. (1986) Jahn-Teller Effect in Five-Coordinated Copper(II) Complexes. Chem. Phys. 104, 191–199.Google Scholar
  28. Bacci, M., and Cannistraro, S. (1987a) Temperature Dependence of the g Values in Blue Copper Protein EPR Spectra. Chem. Phys. Leu. 133, 109–112.Google Scholar
  29. Bacci, M., and Cannistraro, S. (1987b) A Vibronic Coupling Approach for the Interpretation of the g-Value Temperature Dependence in Type-I Copper Proteins. J. Chem. Soc. Faraday Trans. I 83, 3693–3700.Google Scholar
  30. Baldacchini, G., Botti, S., Grassano, U. M., and Luty, F. (1993) Spin-Orbit Coupling, Spin-Lattice Relaxation, and Spin-Memory Studies of F-Center-Molecular-Ion Pairs in Alkali Halides. II Nuovo Cimento 15D, 207–227.Google Scholar
  31. Banci, L., Bertini, I., and Luchinat, C. (1986) Electron Relaxation. Magn. Reson. Rev. 11, 1–40.Google Scholar
  32. Banci, L., Bertini, I., and Luchinat, C. (1991) Nuclear and Electron Relaxation, VCH, Weinheim.Google Scholar
  33. Barbieri, R., Ruisi, G., Silvestri, A., Giullani, A. M., Barbieri, A., Spina, G., Pieralli, F., and Giallo, F. D. (1995). Dynamics of tin nuclei in alkyltin(IV)-deoxyribonucleic acid condensates by variable-temperature tin-119 Mossbauer spectroscopy. J. C. S. Dalton Trans, 467–475.Google Scholar
  34. Barbon, A., Brustolon, M., Maniero, A. L., Romanelli, M., and Brunel, L.-C. (1999) Dynamics and spin relaxation of tempone in a host crystal. An ENDOR, high field EPR and electron spin echo study. Phys. Chem. Chem. Phys. 1, 4015–4023.Google Scholar
  35. Barnes, J. P., Liang, Z., Mchaourab, H. S., Freed, J. H., and Hubbell, W. L. (1999) A Multifrequency Electron Spin Resonance Study of T4 Lysozyme Dynamics. Biophys. J. 76, 3298–3306.PubMedCentralPubMedGoogle Scholar
  36. Basosi, R., Sealy, R. C., Kalyanaraman, B., and Hyde, J. S. (1984) Interaction of Semiquinones with Paramagnetic Metal Ions in Aqueous Solution. Relaxation and Complex Formation. J. Magn. Reson. 59, 41–49.Google Scholar
  37. Behringer, R. E. (1958) Number of Single, Double, and Triple Clusters in a System Containing Two Types of Atoms. I. Chem. Phys. 29, 537–539.Google Scholar
  38. Bertini, I., and Luchinat, C. (1986) NMR of Paramagnetic Molecules in Biological Systems. Benjamin/Cummings Publ. Menlo Park, CA.Google Scholar
  39. Bertini, I., Briganti, F., Luchinat, C., Mancini, M., and Spina, G. (1985) The Electron-Nucleus Dipolar Coupling in Slow Rotating Systems. 2. The Effect of g Anisotropy and Hyperfine Coupling when S =1/2 and I = 3/2. J. Magn. Reson. 63, 41–55.Google Scholar
  40. Bertini, I., Briganti, F., and Luchinat, C. (1986) Solvent Proton Nuclear Magnetic Relaxation Dispersion (NMRD) in Solutions of Paramagnetic Macromolecules. In Advanced Magnetic Resonance Techniques in Systems of High Molecular Complexity, Birkhäuser, Boston, 165–195.Google Scholar
  41. Bertini, I., Luchinat, C., Brown, R. D., III, and Koenig, S. H. (1989a) Relaxation of the electronic spin moment of copper(II)-macromolecular complexes in solution. J. Am. Chem. Soc. 111, 3532–3536.Google Scholar
  42. Bertini, I., Banci, L., and Luchinat, C. (1989b) Proton Magnetic Resonance of Paramagnetic Metalloproteins. Methods Enzymol. 117, 246–263.Google Scholar
  43. Bertini, I., Xia, Z., and Luchinat, C. (1992a) Solvent Water ‘H NMRD Study of Oxovanadium(IV) Aquò Ion. J. Magn. Reson. 99, 235–246.Google Scholar
  44. Bertini, I., Luchinat, C. and Xia, Z. (1992b) Electronic Relaxation of the Titanium(III) Hexaqua Complex Detected by Solvent Water NMRD Spectroscopy. Inorg. Chem. 31, 3152–3154.Google Scholar
  45. Bertini, I., Briganti, F., Xia, Z., and Luchinat, C. (1993a) Nuclear Magnetic Relaxation Dispersion Studies of Hexaaquo Mn(II) Ions in Water-Glycerol Mixtures. J. Magn. Reson. A 101, 198–201.Google Scholar
  46. Bertini, I., Capozzi, F., and Luchinat, C., and Xia, Z. (1993b) Nuclear and Electron Relaxation of Fe(OH2)63+. J. Phys. Chem. 97, 1134–1137.Google Scholar
  47. Bertini, I., Martini, G., and Luchinat, C. (1994a) Relaxation, Background and Theory, in Handbook of Electron Spin Resonance. Poole, C. P., Jr., and Farach, H. A. eds, American Institute of Physics, New York, 51–77.Google Scholar
  48. Bertini, I., Martini, G., and Luchinat, C. (1994b) Relaxation Data Tabulation, in Handbook of Electron Spin Resonance. Poole, C. P., Jr., and Farach, H. A. eds, American Institute of Physics, New York, 79–310.Google Scholar
  49. Bertini, I., Ciurli, S., Dikiy, A., Gasanov, R., Luchinat, C., Martini, G., and Safarov, N. (1999) High-Field NMR Studies of Oxidized Blue Copper Proteins: The Case of Spinach Plastocyanin. J. Am. Chem. Soc. 121, 2037–2046.Google Scholar
  50. Bertrand, P., Gayda, J.-P., and Rao, K. K. (1982). Electron spin-lattice relaxation of the (4Fe4S) ferredoxin from Bacillus stearothermophilus. Comparison with other iron proteins. J. Chem. Phys. 76, 4715–4719.Google Scholar
  51. Beth, A. H. and Robinson, B. H. (1989) Nitrogen-15 and Deuterium Substituted Spin Labels for Studies of Very Slow Rotational Motion. Biol. Magn. Reson. 8, 179–253 (see pages 234–248 ).Google Scholar
  52. Bietsch, W., Takagi, S., and von Schütz, J. U. (1995) Pulsed ESR on the Organic Radical Salt: 3,3’-Diethyl-4,4’-Dimethyl-2,2’-Thiazolocyanine-[TCNQ]2. Appl. Magn. Reson. 9, 517–525.Google Scholar
  53. Bizzarri, A. R., Iakovleva, O. A., Parak, F. (1995) Spin-lattice relaxation in Mossbauer spectra of metmyoglobin: investigation of crystals, water, and water-glycerol solutions, Chem. Phys. 191, 185–194.Google Scholar
  54. Bleaney, B. and Stevens, K. W. H. (1953) Paramagnetic Resonance. Reports Prog. Phys. 16, 108–159.Google Scholar
  55. Bloch, F. (1946) Nuclear Induction. Phys. Rev. 70, 460–485.Google Scholar
  56. Bloembergen, N. (1949) On The Interaction of Nuclear Spin in a Crystalline Lattice. Physica 15, 386–426.Google Scholar
  57. Bloembergen, N., and Morgan, L. O. (1961) Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation. J. Chem. Phys. 34, 842–850.Google Scholar
  58. Bloembergen, N. and Wang, S. (1954) Relaxation Effects in Para-and Ferromagnetic Resonance. Phys. Rev. 93, 72–83.Google Scholar
  59. Bloembergen, N., Purcell, E. M., and Pound, R. V. (1948) Relaxation Effects in Nuclear Resonance Absorption. Phys. Rev. 73, 679–712.Google Scholar
  60. Blum, H., Cusanovich, M. A., Sweeney, W. V., and Ohnishi, T. (1981) Magnetic Interactions between Dysprosium Complexes and Two Soluble Iron-Sulfur Proteins. J Biol. Chem. 256, 2199–2206.PubMedGoogle Scholar
  61. Blumberg, W. E. (1960) Nuclear Spin-Lattice Relaxation Caused by Paramagnetic Impurities. Phys. Rev. 119, 79–84.Google Scholar
  62. Bokor, M., Marek, T., and Tompa, K. (1996) Solid-State NMR of 1-Propyltetrazole Complexes of Iron(II) and Zinc(II). 1. ‘H Spin-Lattice Relaxation Time. J. Magn. Reson. A 122, 157–164.Google Scholar
  63. Boscaino, R., Gelardi, F. M., and Mantegna, R. N. (1986a) Spectral Diffusion and Saturation Kinetics in Inhomogeneous Systems. J. Magn. Reson. 70, 251–261.Google Scholar
  64. Boscaino, R., Gelardi, F. M., and Mantegna, R. N. (1986b) Experimental Detection of Spectral Diffusion by the Saturation Transient Method. J. Magn. Reson. 70, 262–269.Google Scholar
  65. Bouffard, V., Roinel, Y., Roubeau, P., and Abragam, A. (1980) Dynamic nuclear polarization in 6LiD. J. Physique 41, 1447–1451.Google Scholar
  66. Bourdel, D., Ablart, G., Pescia, J., Clement, S., and Renard, J. P. (1981) Electron-spinrelaxation in a one-dimensional system. Phys. Rev. B 23, 1339–1341.Google Scholar
  67. Bowers, K. D., and Mims, W. B. (1959) Paramagnetic Relaxation in Nickel Fluosilicate. Phys. Rev. 115, 285–295.Google Scholar
  68. Bowman, M. K. (1990) Fourier transform electron spin resonance, in Modern Pulsed and Continuous Wave Electron Spin Resonance, L. Kevan and M. K. Bowman, eds., Wiley, N. Y., 1–42, especially p. 28–29.Google Scholar
  69. Bowman, M. K. (1993) Strategies for Measurement of Electron Spin Relaxation, in Magnetic Resonance of Carbonaceous Solids, R. E. Botto and Y. Sanada eds., Adv. Chem. Ser. 229, Chapter 5.Google Scholar
  70. Bowman, M. K. (2000) unpublished comments to the Eatons, February 2, 2000.Google Scholar
  71. Bowman, M. K., and Kevan, L. (1977a) Electron Spin-Lattice Relaxation Mechanisms of Radiation Produced Trapped Electrons and Hydrogen Atoms in Aqueous and Organic Glassy Matrices: Modulation of Electron Nuclear Dipolar Interaction by Tunnelling Modes in a Glassy Matrix. Disc. Faraday Soc. 63, 7–17.Google Scholar
  72. Bowman, M. K., and Kevan, L. (1977b) An electron spin-lattice relaxation mechanism involving tunneling modes for trapped radicals in glassy matrixes. Theoretical development and application to trapped electrons in y-irradiated ethanol glasses. J. Phys. Chem. 81, 456–461.Google Scholar
  73. Bowman, M. K., and Kevan, L. (1979) Electron Spin-Lattice Relaxation in Nonionic Solids, in Time Domain Electron Spin Resonance, L. Kevan and R. N. Schwartz, eds., Wiley, New York, pages 68–105.Google Scholar
  74. Bowman, M. K. and Norris, J. R. (1982) Cross Relaxation of Free Radicals in Partially Ordered Solids. J. Phys. Chem. 86, 3385–3390.Google Scholar
  75. Boyer, R. F. and Keinath, S. E., eds. (1978) Molecular Motion in Polymers by ESR: papers presented at the Eighth Midland Macromolecular Meeting held between August 21–25, 1978, Published for MMI Press by Harwood Academic Publishers.Google Scholar
  76. Brändle, R., Krüger, G. J., Müller-Warmuth, W. (1970) Pulsed Spectroscopic Investigation of Electron Spin Relaxation in Free Radicals. Z. Naturforsch. 25A, 1–11.Google Scholar
  77. Breen, D. P., Krupka, D. C., and Williams, F. I. B. (1969) Relaxation in a Jahn-Teller System. I. Copper in Octahedral Water Coordination. Phys. Rev. 179, 241–254.Google Scholar
  78. Brown, I. M. (1971) Electron Spin Echoes and Spectral Diffusion in Organic Radical Solids. J. Chem. Phys. 55, 2377–2384.Google Scholar
  79. Brown, I. M. (1979) Electron Spin-Echo Studies of Relaxation Processes in Molecular Solids, in Time Domain Electron Spin Resonance, L. Kevan and R. N. Schwartz, eds., Wiley, New York, chapter 6Google Scholar
  80. Brustolon, M., and Segre, U. (1994) Electron Spin-Lattice Relaxation Time and Spectral Diffusion in y-irradiated L-Alanine. Appl. Magn. Reson. 7, 405–413.Google Scholar
  81. Budil, D. E., Earle, K. A., and Freed, J. H. (1993) Full Characterization of the Rotational Diffusion Tensor by Electron Paramagnetic Resonance at 250 GHz. J. Phys. Chem. 97, 1294–1303.Google Scholar
  82. Budker, V., Du, J.-L., Seiter, M., Eaton, G. R., and Eaton, S. S. (1995) Electron-Electron Spin-Spin Interaction in Spin-Labeled Low-Spin Methemoglobin. Biophys. J. 68, 2531–42.PubMedCentralPubMedGoogle Scholar
  83. Burchfield, J. M., Du, J.-L., More, K. M., Eaton, S. S., and Eaton, G. R. (1997) Enhancement of electron spin relaxation rates of metalloporphyrins due to interaction with a faster relaxing metal bound to an appended bipyridyl. Inorg. Chim. Acta 263, 23–33.Google Scholar
  84. Burns, P. D. and La Mar, G. N. (1982) Proton Spin Relaxation for the Nonlabile Coordinated Chelate in Lanthanide Shift Reagents. J. Magn. Reson. 46, 61–68.Google Scholar
  85. Canet, D. (1996) Nuclear Magnetic Resonance: Concepts and Methods. Wiley, Chichester, 1996, page 106.Google Scholar
  86. Caravan, P., and Merbach, A. E. (1997) An extreme water exchange rate: the europium(II) aqua ion. Chem. Commun. 2147–2148.Google Scholar
  87. Caravan, P., nth, E., Rockenbauer, A., and Merbach, A. E. (1999) Nuclear and Electronic Relaxation of Eu2+ (aq): An Extremely Labile Aqua Ion. J. Am. Chem. Soc. 121, 10403–10409.Google Scholar
  88. Carr, H. Y. and Purcell, E. M. (1954) Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 94, 630–638.Google Scholar
  89. Carrington, A. and McLachlan, A. D. (1967) Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics. Harper & Row, Publishers, New York.Google Scholar
  90. Carruthers, L. M., Closken, C. L., Link, K. L., Mahapatro, S. N., Bikram, M., Du, J.-L., Eaton, S. S., and Eaton, G. R. (1999) Electron spin relaxation in chromium-nitrosyl complexes. Inorg. Chem. 38, 3529–3534.PubMedGoogle Scholar
  91. Carss, S. A., Scheler, U., Harris, R. K., Holstein, P., and Fletton, R. A. (1996) 19F NMR of Proton-Containing Solids. Magn. Reson. Chem. 34, 63–70.Google Scholar
  92. Castle, J. G. Jr., Feldman, D. W., Klemens, P. G., and Weeks, R. A. (1963) Electron Spin-Lattice Relaxation at Defect Sites; E’ Centers in Synthetic Quartz at 3 Kilo-Oersteds. Phys. Rev. 130, 577–588.Google Scholar
  93. Castle, J. G., Jr., and Feldman, D. W. (1965a) Resonance modes at defects in crystalline quartz, Phys. Rev. A 137, 671–673.Google Scholar
  94. Castle, J. G., Jr. and Feldman, D. W. (1965b) Temperature dependence of paramagnetic relaxation at point defects in vitreous silica, J. Appl. Phys. 36, 124–128..Google Scholar
  95. Chance, M. R. (1993) Low-Temperature Optical Spectroscopy: Metalloprotein Structure and Dynamics. Meth. Enzymol. 226, 97–118.PubMedGoogle Scholar
  96. Chang, T., and Yang, G. C. (1968) Temperature Dependence of Paramagnetic Relaxation of Mo5+ in TiO2. J. Chem. Phys. 48, 2546–2549.Google Scholar
  97. Chasteen, N. D. and Hanna, M. W. (1972) Electron Paramagnetic Resonance Line Widths of Vanadyl(IV) a-Hydroxycarboxylates. J. Phys. Chem. 76, 3951–3958.Google Scholar
  98. Cheung, T. T. P. (1996) Spin Diffusion in Solids, Encyclopedia of NMR 7, 4518–24.Google Scholar
  99. Chiarini, F., Martinelli, M., Rolla, F. A., and Santucci, S. (1973) Periodic Longitudinal Magnetization of a Spin System Irradiated with Two Transverse Radio-Frequency Waves. Phys. Lett. 44A, 91–92.Google Scholar
  100. Chiarini, F., Martinelli, M., Pardi, L., and Santucci, S. (1975) Electron-spin double resonance by longitudinal detection: Line shape and many-quantum transitions. Phys. Rev. B 12, 847–852.Google Scholar
  101. Cianflone, F., Francia, F., and Leporini, D. (1998) Measurement of the Longitudinal Relaxation Time by Continuous-Wave, Nonlinear Electron Spin Resonance Spectroscopies. J. Magn. Reson. 131, 86–91.PubMedGoogle Scholar
  102. Cinget, F., Fries, P. H., Greilich, U., and Vottero, P. J. A. (1995) Electron-Nuclear Relaxation Time Tie for Intramolecular Distance Evaluation. Magn. Reson. Chem. 33, 260–272.Google Scholar
  103. Clarkson, R. B., Smimov, A. I., Smimova, T. I., Kang, H., Belford, R. L., Earle, K., and Freed, J. H. (1998) Multi-frequency EPR determination of zero-field splitting of high spin species in liquids: Gd(III) chelates in water. Mol. Phys. 95, 1325–1332.Google Scholar
  104. Colligiani, A., Giordano, M., Leporini, D., Lucchesi, M., Martinelli, M., Pardi., L., and Santucci, S. (1992) Longitudinally Detected Electron Spin Resonance: Recent Developments. Appl. Magn. Reson. 3, 107–129.Google Scholar
  105. Colombo, M. G., Meier, B. H., and Ernst, R. R. (1988) Rotor-Driven Spin Diffusion in Natural-Abundance 13C Spin Systems. Chem. Phys. Lett. 146, 189–196.Google Scholar
  106. Colvin, J. T. and Stapleton, H. J. (1985) Fractal and spectral dimensions of biopolymer chains: Solvent studies of electron spin relaxation rates in myoglobin azide. J. Chem. Phys. 82, 4699–4706.Google Scholar
  107. Cotton, F. A. (1971) Chemical Applications of Group Theory, 2 nd Ed., Wiley, New York.Google Scholar
  108. Cusack, S., and Doster, W. (1990) Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency by ineleastic neutron scattering. Biophys. J. 58, 243–251.PubMedCentralPubMedGoogle Scholar
  109. Daraseliya, D. M. and Manenkov, A. A. (1970) Quenching of Cross Correlation in Inhomogeneously Broadened EPR Lines. JETP Letters 11, 224–226 (337–339 in Russian)Google Scholar
  110. Daraseliya, D. M., Epifanov, A. S., and Manenkov, A. A. (1970) Relaxation in Inhomogeneously Broadened EPR Lines. Soviet Physics JETP 32, 244–249 (59, 445–456 in Russian).Google Scholar
  111. Davids, D. A., and Wagner, P. E. (1964) Magnetic Field Dependence of Paramagnetic Relaxation in a Kramers Salt. Phys. Rev. Lett. 12, 141–142.Google Scholar
  112. Davis, C. F. Jr., Strandberg, M. W. P., and Kyhl, R. L. (1958) Direct Measurement of Electron Spin-Lattice Relaxation Times. Phys. Rev. 111, 1268–1272.Google Scholar
  113. Davoust, C. E., Doan, P. E., and Hoffman, B. M. (1996) Q-Band Pulsed Electron Spin-Echo Spectrometer and Its Application to ENDOR and ESEEM. J. Magn. Reson. A 119, 38–44.Google Scholar
  114. De Abreu, C. D., Pinhal, N. M., and Vugman, N. V. (1992) Temperature Dependence of g Values of Fe(I) and Ru(I) Cyanide Complexes in a KCI Host Lattice. J. Magn. Reson. 100, 588–592.Google Scholar
  115. Deatherage, J. F., Loe, R. S., and Moffat, K. (1976) Structure of fluoride methemoglobin. J. Mol. Biol. 104, 723–728.PubMedGoogle Scholar
  116. DeRose, V. J. and Hoffman, B. M. (1995) Protein Structure and Mechanism Studied by Electron Nuclear Double Resonance Spectroscopy. Meth. Enzymol. 246, 554–589; see page 567.Google Scholar
  117. DiBartolo, B. and Kyrkos, S., eds. (1997) Spectroscopy and Dynamics of Collective Excitations in Solids, NATO ASI series B, 356, 53.Google Scholar
  118. Dietel, E., Hirsch, A., Pietzak, B., Waiblinger, M., Lips, K., Weidinger, A., Gruss, A., and Dinse, K.-P. (1999) Atomic Nitrogen Encapsulated in Fullerenes: Effects of Cage Variations. J. Am. Chem. Soc. 121, 2432–2437.Google Scholar
  119. Diezemann, G. (1992) High-field spin-lattice relaxation of methyl groups: relation to neutron scattering. J. Phys. Condensed Matter 4, 9153–9180.Google Scholar
  120. Dikanov, S. A., and Tsvetkov, Y. D. (1992) Electron Spin Echo Modulation (ESEEM) Spectroscopy. CRC Press, Boca Raton, Florida.Google Scholar
  121. Dishon, M., Bendier, J. T., and Weiss, G. H. (1990) Tables of the Inverse Laplace Transform of the Function e -sβ, J. Res. Natl. Inst. Stand. Technol. 95, 433–467.Google Scholar
  122. Drago, R. S. (1977) Physical Methods in Chemistry, Saunders, Philadelphia, p. 252. Drago, R. S. (1992) Physical Methods for Chemists, Saunders, Philadelphia, p. 578–594.Google Scholar
  123. Du, J.-L., More, K. M., Eaton, S. S., and G. R. Eaton, G. R. (1992) Orientation Dependence of Electron Spin Phase Memory Relaxation Times in Copper(II) and Vanadyl Complexes in Frozen Solution. Israel J. Chem. 32, 351–355.Google Scholar
  124. Du, J.-L., Eaton, G. R., and Eaton, S. S. (1994) Effect of Molecular Motion on Electron Spin Phase Memory Times for Copper(II) Complexes in Doped Solids. Appl. Magn. Reson. 6, 373–8.Google Scholar
  125. Du, J.-L., Eaton, G. R., and Eaton, S. S. (1995a) Temperature, Orientation, and Solvent Dependence of Electron Spin-Lattice Relaxation Rates for Nitroxyl Radicals in Glassy Solvents and Doped Solids. J. Magn. Reson. A 115, 213–221.Google Scholar
  126. Du, J.-L., Eaton, G. R., and Eaton, S. S. (1995b) Electron-Spin-Lattice Relaxation in Natural Abundance and Isotopically Enriched Oxo-chromium(V)bis(2-hydroxy-2-ethylbutryate). J. Magn. Reson. A 115, 236–40.Google Scholar
  127. Du, J.-L., Eaton, G. R., and Eaton, S. S. (1995c) Temperature and Orientation Dependence of Electron Spin Relaxation Rates for Bis(diethyldithiocarbamato) Copper(II). J. Magn. Reson. A 117, 67–72.Google Scholar
  128. Du, J.-L., Eaton, G. R., and Eaton, S. S. (1996) Electron Spin Relaxation in Vanadyl, Copper(II), and Silver(II) Porphyrins in Glassy Solvents and Doped Solids. J. Magn. Reson. A 119, 240–246.Google Scholar
  129. Dubinskii, A. A., Maresch, G. G., and Spiess, H.-W. (1994) Two-dimensional electron paramagnetic resonance spectroscopy of nitroxides: Elucidation of restricted molecular motions. J. Chem. Phys. 100, 2437–48.Google Scholar
  130. Dugad, L. B., La Mar, G. N., and Unger, S. W. (1990) Influence of Molecular Correlation Time on the Homonuclear Overhauser Effect in Paramagnetic Proteins. J. Am. Chem. Soc. 112, 1386–1392.Google Scholar
  131. Dugdale, D. E., and Thorpe, J. S. (1969) Spin-lattice relaxation of Cr:Al acetylacetonate. J. Phys. C (Solid St. Phys) Ser. 2. 2, 1376–1383.Google Scholar
  132. Dzuba, S. A. (1992) Echo-induced EPR spectra of nitroxides: Study of molecular librations. Pure & Appl. Chem. 64, 825–831.Google Scholar
  133. Dzuba, S. A. (1996) Librational motion of guest spin probe molecules in glassy media. Phys. Lett. A 213, 77–84.Google Scholar
  134. Dzuba, S. A., and Tsvetkov, Yu. D. (1988) Magnetization Transfer in Pulsed EPR of I5N Nitroxides: Reorientational Motion Model of Molecules in Glassy Liquids. Chem. Phys. 120, 291–298.Google Scholar
  135. Dzuba, S. A., Salikhov, K. M., and Tsvetkov, Yu. D. (1981) Slow rotations (i ? 10–5s) of methyl groups in radicals studied by pulse ESR spectroscopy. Chem. Phys. Lett. 79, 568–572.Google Scholar
  136. Dzuba, S. A., Maryasov, A. G., Salikhov, K. M., and Tsvetkov, Yu. D. (1984a) Superslow rotations of nitroxide radicals studied by pulse EPR spectroscopy. J. Magn. Reson. 58, 95–117.Google Scholar
  137. Dzuba, S. A., Maryasov, A. G., Salikhov, K. M., and Tsvetkov, Yu. D. (1984b) Superslow Rotations of Nitroxide Radicals Studied by Pulse EPR Spectroscopy. J. Magn. Reson. 58, 95–117.Google Scholar
  138. Dzuba, S. A., Shushakov, O. A., and Tsvetkov, Yu. D. (1985) Spin-Lattice Relaxation in Nitroxyl Radicals. J. Structural Chem. 26, 480–482. (186–188 in Russian)Google Scholar
  139. Dzyuba, S. A., Suvemev, A. A., and Temkin, S. I. (1989) Nitroxyl Radical Rotational-Mobility Anisotropy Effects in Magnetization-Transfer Electron Spin Echo. Theor. Exptl. Chem. 25, 596–601. (Note that in some papers the name Dzuba is also transliterated as Dzyuba.)Google Scholar
  140. Dzuba, S. A., Tsvetkov, Yu. D., and Maryasov, A. G. (1992) Echo-induced EPR spectra of nitroxides in organic glasses: model of orientational molecular motions near equilibrium position. Chem. Phys. Lett. 188, 217–222.Google Scholar
  141. Dzuba, S. A., Golovina, Ye. A., and Tsvetkov, Yu. D. (1993) Echo-Induced EPR Spectra of Spin Probes as a Method for Identification of Glassy States in Biological Objects. J. Magn. Reson. B 101, 134–138.Google Scholar
  142. Dzuba, S. A., Watari, H., Shimoyama, Y., Maryasov, A. G., Kodera, Y., and Kawamori, A. (1995) Molecular Motion of the Cholestane Spin Label in a Multibilayer in the Gel Phase Studied Using Echo-Detected EPR. J. Magn. Reson. A 115, 80–86.Google Scholar
  143. Earle, K. A., Budil, D. E., and Freed, J. H. (1993) 250-GHz EPR of Nitroxides in the Slow- Motional Regime: Models of Rotational Diffusion. J. Phys. Chem. 97, 13289–13297.Google Scholar
  144. Earle, K. A., Moscicki, J. K., Polimeno, A., and Freed, J. H. (1997) A 250 GHz ESR study of o-terphenyl: Dynamic cage effects above Tc. J. Chem. Phys. 106, 9996–10015.Google Scholar
  145. Eastman, M. P., Kooser, R. G., Das, M. R., and Freed, J. H. (1969) Studies of Heisenberg Spin Exchange in ESR Spectra. I. Linewidth and Saturation Effects. J. Chem. Phys. 51, 2690–2709.Google Scholar
  146. Eastman, M. P., Bruno, G. V., and Freed, J. H. (1970) ESR Studies of Heisenberg Spin Exchange. III. An ELDOR Study. J. Chem. Phys. 52, 321–327.Google Scholar
  147. Eaton, G. R. (1993) “New and Notable”: A new EPR methodology for the study of biological systems. Biophys. J. 64, 1373–4.Google Scholar
  148. Eaton, S. S. and Eaton, G. R. (1993) Irradiated Fused-Quartz Standard Sample for Time-Domain EPR. J. Magn. Reson. A 102, 354–6. Note that in this paper the magnetic field range in Figure 1 should be 3263 to 3273 G, not 2869 to 2879 G as published.Google Scholar
  149. Eaton, S. S. and Eaton, G. R. (1996) Electron spin relaxation in discrete molecular species, Current Topics in Biophysics 20, 9–14.Google Scholar
  150. Eaton, G. R. and Eaton, S. S. (1999) Solvent and temperature dependence of spin echo dephasing for chromium(V) and vanadyl complexes in glass solution. J. Magn. Reson. 136, 63–68.PubMedGoogle Scholar
  151. Eaton, S. S., Kee, A., Konda, R., Eaton, G. R., Trulove, P. C., and Carlin, R. T. (1996) Comparison of electron paramagnetic resonance line shapes and electron spin relaxation rates for C60- and C603- in 4:1 toluene:acetonitrile and dimethylsulfoxide. J. Phys. Chem. 100, 6910–6919.Google Scholar
  152. Eliav, U. and Freed, J. H. (1983) Multipulse sequences in electronic-spin echoes, Rev. Sci. Instrum. 54, 1416–1417.Google Scholar
  153. Feix, J. B., Popp, C. A., Venkataramu, S. D., Beth, A. H., Park, J. H., and Hyde, J. S. (1984) An Electron-Electron Double-Resonance Study of Interactions between [14N]- and [I5N]Stearic Acid Spin Label Pairs: Lateral Diffusion and Vertical Fluctuations in Dimyristoylphosphatidylcholine. Biochem. 23, 2293–2299.Google Scholar
  154. Feldman, D. W., Castle, J. G. Jr., and Murphy, J. (1965) Spin Relaxation of Atomic Hydrogen in CaF2: Evidence for Local Modes. Phys. Rev. 138 A, 1208–1216.Google Scholar
  155. Feldman, D. W., Castle, J. G., Jr., and Wagner, G. R. (1966). Spin relaxation of atomic hydrogen in fused silica: temperature dependence. Phys. Rev. 145, 237–240.Google Scholar
  156. Fessenden, R W., Homak, J. P., and Venkataraman, B. (1981) Electron spin-lattice relaxation of transient free radicals. J. Phys. Chem. 74, 3694–3704.Google Scholar
  157. Freed, J. H. (1965) Theory of Saturation and Double Resonance Effects in ESR Spectra. J. Chem. Phys. 43, 2312–2332.Google Scholar
  158. Freed, J. H. (1972) Electron Spin Resonance. Ann. Rev. Phys. Chem. 23, 265–310.Google Scholar
  159. Freed, J. H. (1974) Theory of Saturation and Double Resonance in Electron Spin Resonance Spectra. VI. Saturation Recovery. J. Phys. Chem. 78, 1155–1167.Google Scholar
  160. Freed, J. H. (1976) Theory of slow tumbling ESR spectra for nitroxides in Spin Labeling Theory and Applications, L. J. Berliner, ed., Academic Press, New York, ch. 3.Google Scholar
  161. Freed, J. H. (1979) Theory of ESR Saturation Recovery in Liquids and Related Media, in Kevan, L., and Schwartz, R. N., eds., Time Domain Electron Spin Resonance, Wiley-Interscience, New York, pages 31–66.Google Scholar
  162. Freed, J. H. (1998) Linewidths, lineshapes, and spin relaxation in the one and two-dimensional ESR of organic radicals and spin labels, in Foundations of Modern EPR, World Scientific, Singapore, 658–683.Google Scholar
  163. Freed, J. H., and Fraenkel, G. K. (1963) Theory of Linewidths in Electron Spin Resonance Spectra. J. Chem. Phys. 39, 326–348.Google Scholar
  164. Friedman, H. L., Holz, M., and Hertz, H. G. (1979) EPR relaxations of aqueous Nit+ ion. J. Chem. Phys. 70, 3369–3383.Google Scholar
  165. Fukushima, E. and Roeder, S. B. W., 1981, Experimental Pulse NMR A Nuts and Bolts Approach. Addison-Wesley Publishing Co., Reading, Massachusetts, pp. 446–448.Google Scholar
  166. Gaber, B. P., Brown, R. D., Koenig, S. H., and Fee, J. A. (1972) Nuclear Magnetic Relaxation Dispersion in Protein Solutions. Biochim. Biophys. Acta 271, 1–5.PubMedGoogle Scholar
  167. Gaffney, B. J. and Silverstone, H. J. (1993) Simulation of the EMR Spectra of High-Spin Iron in Proteins. Biol. Magn. Reson. 13, 1–57.Google Scholar
  168. Gaffney, B. J., Eaton, G. R., and Eaton, S. S. (1998) Electron spin relaxation rates for high-spin Fe(III) in iron transferrin carbonate and iron transferrin oxalate. J. Phys. Chem. B 102, 5536–5541.PubMedCentralPubMedGoogle Scholar
  169. Gast, P., Mushlin, R A., and Hoff, A. J. (1982) Nonuniform Transfer of Electron Spin Polarization in Reaction Centers of the Photosynthetic Bacterium Rhodopseuomonas sphaeroides. J. Phys. Chem. 86, 2886–2891.Google Scholar
  170. Gayda, J.-P., Gibson, J. F., Cammack, R., Hall, D. O., and Mullinger, R. (1976) Spin Lattice Relaxation and Exchange Interaction in a 2-Iron, 3-Sulphur Protein. Biochim. Biophys. Acta 434, 154–163.PubMedGoogle Scholar
  171. Gayda, J.-P., Bertrand, P., Deville, A., More, C., Roger, G., Gibson, J. F., and Cammack, R. (1979) Temperature dependence of the electronic spin-lattice relaxation time in a 2-iron-2sulfur protein. Biochim. Biophys. Acta 581, 15–26.PubMedGoogle Scholar
  172. Gerstein, B. C. (1998) 1H NMR, in Solid State NMR of Polymers, I. Ando and T. Asakura, eds., Elsevier, Amsterdam.Google Scholar
  173. Geschwind, S., ed., (1972) Electron Paramagnetic Resonance, Plenum Press, New York.Google Scholar
  174. Ghim, B. T., Eaton, S. S., Eaton, G. R., Quine, R. W., Rinard, G. A., and Pfenninger, S. (1995) Magnetic Field and Frequency Dependence of Electron Spin Relaxation Times of the E’ Center in Irradiated Vitreous Silica. J. Magn. Reson. A 115, 230–235.Google Scholar
  175. Ghim, B. T., Du, J.-L., Pfenninger, S., Rinard, G. A., Quine, R. W., Eaton, S. S., and Eaton, G. R. (1996) Multifrequency Electron Paramagnetic Resonance of Irradiated L-Alanine. Appl. Radiat. Isot. 47, 1235–1239.PubMedGoogle Scholar
  176. Gill, J. C. (1962) Spin-Lattice Relaxation of Chromium Ions in Ruby. Proc. Phys. Soc. 79, 58–68.Google Scholar
  177. Giordano, M., Lazzareschi, A., Pardi, L., Santucci, S., and Veracini, C. A. (1979) Spin-Probe Longitudinal Relaxation in a Smectic A Mesophase. J. Magn. Reson. 33, 1–10.Google Scholar
  178. Giordano, M., Martinelli, M., Pardi, L., and Santucci, S. (1981) Dependence of the longitudinal spin relaxation time on concentration for a nitroxyl radical. Mol. Phys. 42, 523–531.Google Scholar
  179. Giordmaine, J. A., Alsop, L. E., Nash, F. R., and Townes, C. H. (1958) Paramagnetic Relaxation at Very Low Temperature. Phys. Rev. 109, 302–311.Google Scholar
  180. Goldman, S. A., Bruno, G. V., Polnaszek, C. F., and Freed, J. H. (1972) ESR study of anisotropic rotational reorientation and slow tumbling in liquid and frozen media. J. Chem. Phys. 56, 716–735.Google Scholar
  181. Goldman, S. A., Bruno, G. V., and Freed, J. H. (1973) ESR studies of anisotropic rotational reorientation and slow tumbling in liquid and frozen media. II. Saturation and nonsecular effects. J. Chem. Phys. 59, 3071–3091.Google Scholar
  182. Gorchester, J., Millhausser, G. L., and Freed, J. H. (1990) Two-Dimensional Electron Spin Resonance, in Modern Pulsed and Continuous-Wave Electron Spin Resonance, L. Kevan and M. K. Bowman, eds., Wiley, New York, 119–194.Google Scholar
  183. Gordon, J. P. and Bowers, K. D. (1958) Microwave Spin Echoes from Donor Electrons in Silicon. Phys. Rev. Lett. 1, 368–369.Google Scholar
  184. Goudemond, I. P., Keartland, J. M., Hoch, M. J. R., Senin, H. B., and Saunders, G. A. (1995) Paramagnetic Ion Relaxation in Rare-earth Doped Phosphate Glasses via 31P NMR. Bull. Magn. Reson. 17, 234–235.Google Scholar
  185. Goudemond, I. P., Keartland, J. M., Hoch, M. J. R., and Saunders, G. A. (1997) Model for nonexponential nuclear relaxation in highly doped magnetic glasses. Phys. Rev. B 56, R8463 - R8466.Google Scholar
  186. Gourdon, J. C., Vigouroux, B., and Pescia, J. (1973) Measurement of Spin-Lattice Relaxation Times Shorter than 10–8 s. Application to CuSO45H2O and Gd Metal. Phys. Leu. 45A, 69–70.Google Scholar
  187. Gramza, M., Hilczer, W., Goslar, J., and Hoffmann, S. K. (1997) Electron Spin Relaxation and ESEEM Spectroscopy of the Glycine Radical in Diglycine Nitrate Single Crystal. Acta Chem. Scand. 51, 556–561.Google Scholar
  188. Greis, J. W., Angerhofer, A., Norris, J. R., Scheer, H., Struck, A., and von Schütz, J. U. (1994) Spectral diffusion and 14N quadrupole splittings in absorption detected magnetic resonance hole burning spectra of photosynthetic reaction centers. J. Chem. Phys. 100, 4820–4827.Google Scholar
  189. Gruss, A., Dinse, K.-P., Hirsch, A., Nuber, B., and Reuther, U. (1997) Photolysis of (C59N)2 Studied by Time-Resolved EPR. J. Am. Chem. Soc. 119, 8728–8729.Google Scholar
  190. Haas, D. A., Sugano, T., Mailer, C., Sugano, T., and Robinson, B. H. (1992) New Developments in Pulsed Electron Paramagnetic Resonance: Direct Measurement of Rotational Correlation Times from Decay Curves. Bull. Magn. Reson. 14, 35–40.Google Scholar
  191. Haas, D. A., Sugano, T., Mailer, C., and Robinson, B. H. (1993) Motion in Nitroxide Spin Labels: Direct Measurement of Rotational Correlation Times by Pulsed Electron Double Resonance. J. Phys. Chem. 97, 2914–2921.Google Scholar
  192. Haas, D. A., Mailer, C., and Robinson, B. H. (1993) Using nitroxide spin labels. How to obtain Tie from continuous wave electron paramagnetic resonance spectra at all rotational rates. Biophys. J. 64, 594–604.PubMedCentralPubMedGoogle Scholar
  193. Hales, B. J., True, A. E., and Hoffman, B. M. (1989) Detection of a New Signal in the EPR Spectrum of Vanadium Nitrogenase from Azotobacter vinelandii. J. Amer. Chem. Soc. 111, 8519–8520.Google Scholar
  194. Ham, F. S. (1965) Dynamical Jahn-Teller Effect in Paramagnetic Resonance Spectra: Orbital Reduction Factors and Partial Quenching of Spin-Orbit Interaction. Phys. Rev. 138, A1727–1737.Google Scholar
  195. Ham, F. S. (1968) Effect of Linear Jahn-Teller Coupling on Paramagnetic Resonance in a 2E State. Phys. Rev. 166, 307–321.Google Scholar
  196. Harris, E. A., and Yngvesson, K. S. (1968a) Spin-lattice relaxation in some iridium salts. I. Relaxation of the isolated (IrCl6)2“ complex. J. Phys. C (Proc. Phys. Soc.) Ser. 2, 1, 990–1010.Google Scholar
  197. Harris, E. A., and Yngvesson, K. S. (1968b) Spin-lattice relaxation in some iridium salts. II. Relaxation of nearest neighbor exchange-coupled pairs. J. Phys. C (Proc. Phys. Soc.) Ser. 2, 1, 1011–1023.Google Scholar
  198. Henrichs, P. M., and Linder, M. (1984) Carbon-13 Spin Diffusion in the Determination of Intermolecular Structure in Solids. J. Magn. Reson. 58, 458–461.Google Scholar
  199. Hervé, J. (1963) Measurement of Electronic Spin-Lattice Relaxation Times.by Rapid Modulation of the Saturation Factor, in Paramagnetic Resonance: Proceedings of the First International Conference held in Jerusalem, July 16–20, 1962, W. Low, ed., vol. II, pp. 689–697, Academic Press, NY.Google Scholar
  200. Hervé, J. and Pescia, J. (1960) Résonance Paramagnétique — Mesure du temps de relaxation T1 par modulation du champ radiofréquence HI et détection de la variation d’aimantation selon le champ director. Comps. Rend. 251, 665–667.Google Scholar
  201. Hervé, J. and Pescia, J. (1963) Résonance Magnétique Électronique — Théorie phénoménologique de la mesure du temps de relaxation T1, utilisant un champ radiofréquence modulé en amplitude. Vérification expérimentale sur le diphényl-picrylhydrazyl. Comps. Rend. 255, 2926–2928.Google Scholar
  202. Hilczer, W., Hoffmann, S. K., Goslar, J., Tritt-Goc, J., and Augustyniak, M. (1993) Electron Spin Echo Studies of Spin-Lattice and Spin-Spin Relaxation of SeO3- Radicals in (NH4)3H(SeO4)2 Crystal. Solid State Commun. 85, 585–587.Google Scholar
  203. Hófer, P., Holczer, K., and Schmalbein, D. (1989) Characterization of Gamma-ray Irradiated Powder Alanine Samples by Pulsed EPR. Appl. Radial. Isot. 40, 1233–1235.Google Scholar
  204. Hoffmann, S. K. and Goslar, J. (1998) Electron Spin Relaxation of Copper(II) Ions in Diamagnetic Crystals. Appl. Magn. Reson. 14, 293–303.Google Scholar
  205. Hoffmann, S. K., Gramza, M., and Hilczer, W. (1995) Molecular Dynamics of Diglycine Nitrate Studied by Phase Memory Relaxation Time of Glycine Radical. Ferroelectrics 172, 431–435.Google Scholar
  206. Hoffmann, S. K., Hilczer, W., and Goslar, J. (1996a) EPR, Electron Spin-Lattice Relaxation, and Debye Temperature of Cu(II)-Doped Triglycine Selenate Crystal. J. Magn. Reson. A 122, 37–41.Google Scholar
  207. Hoffman, S. K., Hilczer, W., and Goslar, J. (1996b) Electron Spin Echo Studies of Flipping Type Minimum in Phase Memory Time of Cu(II) Ions in Triglycine Selenate Crystal at Low Temperatures. Solid State Commun. 100, 449–452.Google Scholar
  208. Hoffmann, S. K., Goslar, J., Hilczer, W., Augustyniak, M. A., and Marciniak, M. (1998a) Vibronic Behavior and Electron Spin Relaxation of Jahn-Teller Complex Cu(H2O)6 2+ in (NH4)2Mg(SO4)2 6H2O Single Crystal. J. Phys. Chem. A 102, 1697–1707Google Scholar
  209. Hoffmann, S. K., Augustyniak, M. A., Goslar, J., and Hilczer, W. (1998b) Does the Jahn-Teller effect influence electron spin relaxation? Electron paramagnetic resonance and electron spin echo studies of the Mn2+ doped (NH4)2Mg(SO4)2·6H2O single crystal and comparison with Cue+ data. Mol. Phys. 95, 1265–1273.Google Scholar
  210. Hornak, J. and Freed, J. H. (1986) Spectral Rotation in Pulsed ESR Spectroscopy. J. Magn. Reson. 67, 501–518.Google Scholar
  211. Horvitz, E. P. (1971) Nuclear Spin Diffusion Induced by Paramagnetic Impurities in Nonconducting Solids. Phys. Rev. B 3, 2868–2872.Google Scholar
  212. Huang, C.-Y. (1967) Optical Phonons in Electron Spin Relaxation. Phys. Rev. 154, 215–219.Google Scholar
  213. Hubrich, M., Maresch, G. G., and Spiess, H. W. (1995) Application of Pulsed ENDOR to the Study of Radicals in a Liquid-Crystalline Copolyester. J. Magn. Reson. A 113, 177–184.Google Scholar
  214. Huisjen, M. and Hyde, J. S. (1974a) Saturation recovery measurements of electron spin-lattice relaxation times of free radicals in solution. J. Chem. Phys. 60, 1682–1683.Google Scholar
  215. Huisjen, M. and Hyde, J. S. (1974b) A Pulsed EPR Spectrometer. Rev. Sci. Instrum. 45, 669–675.Google Scholar
  216. Hurrell, J. P., and Davies, E. R. (1971) Nuclear Induced Electron-Spin-Echo Decay in Solids. Solid State Communications 9, 461–463.Google Scholar
  217. Husted, R., Du, J.-L., Eaton, G. R., and Eaton, S. S. (1995) Temperature and Orientation Dependence of Electron Spin Relaxation in Molybdenum(V) Porphyrins. Magn. Reson. Chem. 33, S66 - S69.Google Scholar
  218. Hwang, J. S., Mason, R. P., Hwang, L.-P., and Freed, J. H. (1975) Electron Spin Resonance Studies of Anisotropic Rotational Reorientation and Slow Tumbling in Liquid and Frozen Media. III. Perdeuterated 2,2,6,6-Tetramethy1–4-piperidone-N-Oxide and An Analysis of Fluctuating Torques. J. Phys. Chem. 78, 489–511.Google Scholar
  219. Hyde, J. S. (1960) Magnetic Resonance and Rapid Passage in Irradiated LiF. Phys. Rev. 119, 1483–1495.Google Scholar
  220. Hyde, J. S. (1974) Paramagnetic Relaxation. Ann. Rev. Phys. Chem. 25, 407–435.Google Scholar
  221. Hyde, J. S. (1979) Saturation Recovery Methodology, in Kevan, L., and Schwartz, R. N., eds., Time Domain Electron Spin Resonance, Wiley-Interscience, New York.Google Scholar
  222. Hyde, J. S. (1998) Saturation Recovery, Chapter I.1 in Foundations of Modern EPR, Eaton, G. R., Eaton, S. S., and Salikhov, K. M. eds., World Scientific, Singapore.Google Scholar
  223. Hyde, J. S. and Hyde, D. A. (1981) Determination of T2 from Analysis of Wings of Symmetrical Inhomogeneous Lines. J. Magn. Reson. 43, 137–140.Google Scholar
  224. Hyde, J. S. and Sarna, T. (1978) Magnetic interactions between nitroxide free radicals and lanthanides or Cue+ in liquids. J. Chem. Phys. 68, 4439–4447.Google Scholar
  225. Hyde, J. S., Froncisz, W. and Mottley, C. (1984) Pulsed ELDOR Measurement of Nitrogen Ti in Spin Labels. Chem. Phys. Lett. 110, 621–625.Google Scholar
  226. Hyde, J. S., Sczaniecki, P. B. and Froncisz, W. (1989) The Bruker Lecture. Alternatives to Field Modulation in Electron Spin Resonance Spectroscopy. J. Chem. Soc. Faraday Trans. I, 85, 3901–12.Google Scholar
  227. Hyde, J. S., Yin, J.-J., Feix, J. B., and Hubbell, W. L. (1990) Advances in spin label oximetry. Pure & Appl. Chem. 62, 255–260.Google Scholar
  228. Innes, J. B. and Brudvig, G. W. (1989) Location and Magnetic Relaxation Properties of the Stable Tyrosine Radical in Photosystem II. Biochem. 28, 1116–1125.Google Scholar
  229. Isogai, Y., Itoh, S., and Nishimura, M. (!990) Location of D’ and distribution of surface charges in Photosystem II. Biochim. Biophys. Acta 1017, 204–208.Google Scholar
  230. Isoya, J., Kanda, H., and Uchida, Y. (1990) EPR studies of interstitial Ni centers in synthetic diamond crystals. Phys. Rev. B 42, 9843–9852.Google Scholar
  231. Kanemoto, K., Yamauchi, J., and Adachi, A. (1998) Electron Spin Relaxation Studies of Conducting Polypyrroles: The Difference of the Relaxation Processes Between Highly Conducting and Semiconducting Polypyrroles. Solid State Commun. 107, 203–207.Google Scholar
  232. Keniry, M. A., Rothgeb, T. M., Smith, R. L., Gutowsky, H. S., and Oldfield, E. (1983) Nuclear Magnetic Resonance Studies of Amino Acids and Proteins. Side-Chain Mobility of Methionine in the Crystalline Amino Acid and in Crystalline Sperm Whale (Physeter catodon) Myoglobin. Biochem. 22, 1917–1926.Google Scholar
  233. Keniry, M. A., Kintanar, A., Smith, R. L., Gutowsky, H. S., and Oldfield, E. (1984) Nuclear Magnetic Resonance Studies of Amino Acids and Proteins. Deuterium Nuclear Magnetic Resonance Relaxation of Deuteriomethyl-Labeled Amino Acids in Crystals and in Halobacterium halobium and Escherichia coli Cell Membranes. Biochem. 23, 288–298.Google Scholar
  234. Kevan, L., and Narayana, P. A. (1979) Disordered Matrices, in Multiple Electron Resonance Spectroscopy. Doric), M. M. and Freed, J. H., eds., Plenum Press, New York, pp. 229–259.Google Scholar
  235. Kevan, L., and Schwartz, R. N., eds., (1979) Time Domain Electron Spin Resonance, WileyInterscience, New York.Google Scholar
  236. Kevan, L., Schlick, S., Toriyama, K., and Iwasaki, M. (1980) Matrix ENDOR of the Protonated Carboxylic Anion Radical in y-Irradiated L-Alanine. Simulation Using a General Matrix ENDOR Line-Shape Model and Single Crystal Data. J. Phys. Chem. 84, 1950–4.Google Scholar
  237. Kinell, P.-O., Rånby, B. G., and Runnström-Reio,V., eds. (1973) ESR Applications to Polymer Research; Proceedings Nobel Symposium (22nd: 1972: Södergarn). Wiley, New York.Google Scholar
  238. King, A. R., Wolfe, J. P., and Ballard, R. L. (1972) NMR of Nuclei near a Paramagnetic Impurity in Crystals. Phys. Rev. Lett. 28, 1099–1102.Google Scholar
  239. Kittel, C. (1963) Quantum Theory of Solids. Wiley, New York. See chapters 2 and 3.Google Scholar
  240. Kittel, C. (1966) Introduction to Solids State Physics, 3nd ed., Wiley, New York, Chapter 5.Google Scholar
  241. Klauder, J. R., and Anderson, P. W. (1962) Spectral Diffusion Decay in Spin Resonance Experiments. Phys. Rev. 125, 912–932.Google Scholar
  242. Klemens, P. G. (1962) Localized Modes and Spin-Lattice Interactions. Phys. Rev. 125, 17951798. See correction in Phys. Rev. 138 A, 1217 (1965).Google Scholar
  243. Klug, C. S., Eaton, S. S., Eaton, G. R., and Feix, J. B. (1998) Ligand-induced conformational change in the ferric enterobactin receptor FepA as studied by site-directed spin labeling and time-domain EPR. Biochemistry 37, 9016–9023.PubMedGoogle Scholar
  244. Knapp, C., Dinse, K.-P., Pietzak, B., Wailbinger, M., and Weidinger, A. (1997). Fourier transform EPR study of N@C60 in solution. Chem. Phys. Lett. 272, 433–437.Google Scholar
  245. Knapp, C., Weiden, N., and Dinse, K.-P. (1998a) EPR investigation of endofullerenes in solution. Appl. Phys. A. Mater. Sci. Process. 66, 249–255.Google Scholar
  246. Knapp, C., Weiden, N., Käss, H., Dinse, K.-P., Pietzak, B., Waiblinger, M.,, and Weidinger, A. (1998b) Electron paramagnetic rsonance study of atomic phosphorus encapsulated in [60]fullerene. Mol. Phys. 95, 999–1004.Google Scholar
  247. Kneller, G. R., and Smith, J. C. (1994) Liquid-like Side-chain Dynamics in Myoglobin. J. Mol. Biol. 242, 181–185.PubMedGoogle Scholar
  248. Knowles, P. F., Brown, R. D., III, Koenig, S. H., Wang, S., Scott, R. A., McGuirl, M. A., Brown, D. E., and Dooley, D. M. (1995) Spectroscopic Studies of the Active Site of Galactose Oxidase. Inorg. Chem. 34, 3895–3902.Google Scholar
  249. Koenig, S. H., and Brown, R. D. III (1985) Relaxation of Solvent Protons and Deuterons by Protein-Bound Mn2+ Ions, Theory and Experiment for Mn2+–Concanavalin A. J. Magn. Reson. 61, 426–439.Google Scholar
  250. Konda, R., Du, J.-L., Eaton, S. S., and Eaton, G. R. (1994) Electron Spin Relaxation Rates for Nitridochromium(V) Tetratolylporphyrin and Nitridochromium(V) Octaethylporphyrin in Frozen Solution. Appl. Magn. Reson. 7, 185–193.Google Scholar
  251. Kooser, R. G., Volland, W. V., and Freed, J. H. (1969) ESR Relaxation Studies on Orbitally Degenerate Free Radicals. I. Benzene Anion and Tropenyl. J. Chem. Phys. 50, 5243–5257.Google Scholar
  252. Krebs, M., von Schütz, J. U., and Wolf, H. C. (1990) Pulsed ESR Studies on Low Dimensional Organic Conductors. Congress Ampere on Magnetic Resonance and Related Phenomena, Stuttgart, 1990, page 503–504.Google Scholar
  253. Krüger, G. J. (1972) Electron Spin Relaxation in Solutions of Organic Free Radicals. Adv. Molec. Relax. Proc. 3, 235–251.Google Scholar
  254. Kubo, A., and McDowell, C. A. (1988) 31P Spectral Diffusion. J. Chem. Phys. 89, 63–70.Google Scholar
  255. Kudryashov, A. N., Dzuba, S. A., Samoilova, R. I., Markaryan, G. A., Lunina, Ye. V., and Tsvetkov, Yu. D. (1993) Investigation of the Reorganizational Dynamics of Nitroxides Adsorbed on Surfaces Using Echo-Induced EPR Lineshapes. J. Magn. Reson. A 105, 204–208.Google Scholar
  256. Kulikov, A. V. (1974) Determination of the distance between the spins of the spin label and paramagnetic center in spin-labeled proteins from the saturation curve parameters of the EPR spectra of the labels at 77 K. Molek. Biol. (Moscow) 10, 132–141 (p. 109 in transi.)Google Scholar
  257. Kumashiro, K. K., Schmidt-Rohr, K., Murphys, O. J., III, Ouellette, K. L., Cramer, W. A., and Thompson, L. K. (1998) A novel tool for probing membrane protein structure: solid state NMR with proton spin diffusion and X-nucleus detection, J. Am. Chem. Soc. 120, 5043–5051.Google Scholar
  258. Kuo, L. C., and Makinen, M. W. (1985) Ground State Splitting of High-Spin Coe+ as a Probe of Coordination Structure. 2. The Ligand Environment of the Active Site Metal Ion of Carboxypeptidase A in Ester Hydrolysis. J. Am. Chem. Soc. 107, 5255–5261.Google Scholar
  259. Kurshev, V. V. and Raitsimring, A. M. (1990) Carr-Purcell Train in the Conditions of Partial Excitation of Magnetic Resonance Spectrum. J. Magn. Reson. 88, 126–129.Google Scholar
  260. Kurtz, S. R., and Stapleton, H. J. (1980) Effects of disorder on electron-spin relaxation in f3- alumina: A prototype glass. Phys. Rev. B 22, 2195–2205.Google Scholar
  261. Kusumi, A., Subczynski, W. K., and Hyde, J. S. (1982) Oxygen transport parameter in membranes deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc. Natl. Acad. Sci. USA 79, 1854–1858.PubMedCentralPubMedGoogle Scholar
  262. Kutter, C., Moll, H. P., van Tol, J., Zuckermann, H., Maan, J. C., and Wyder, P. (1995) Electron-Spin Echoes at 604 GHz Using Far Infrared Lasers. Phys. Rev. Lett. 74, 2925–2928.PubMedGoogle Scholar
  263. Kyhl, R. L., and Nageswara-Rao, B. D. (1967) Effect of Al27 on Electron Cross Relaxation in Ruby. Phys. Rev. 158, 284–287.Google Scholar
  264. LaMar, G. N., Horrocks, W. DeW. Jr., and Holm, R. H., eds., (1973) NMR of Paramagnetic Molecules, Academic Press, New York, pages 288, 568, 611, 638.Google Scholar
  265. Larson, G. H., and Jeffries, C. D. (1966) Spin Lattice Relaxation in Some Rare Earth Salts. II. Angular Dependence, Hyperfine Effects, and Cross Relaxation. Phys. Rev. 145, 311–324.Google Scholar
  266. Leci, E., Brancaccio, A., Cutruzzola, F., Allocatelli, C. T., Tarricone, C., Bolognesi, M., Desideri, A., and Ascenzi, P. (1995) Formate binding to ferric wild type and mutant myoglobins. Thermodynamic and X-ray crystallographic study. FEBS Lett. 357, 227–229.PubMedGoogle Scholar
  267. Lee, S., Patyal, B. R., and Freed, J. H. (1993) A two-dimensional Fourier transform electron-spin resonance (ESR) study of nuclear modulation and spin relaxation in irradiated malonic acid. J. Chem. Phys. 98, 3665–89.Google Scholar
  268. Leniart, D. S., Conner, H. D., and Freed, J. H. (1975) An ESR and ENDOR study of spin relaxation of semiquinones in liquid solution. J. Chem. Phys. 63, 165–199.Google Scholar
  269. Lewis, W. B., and Morgan, L. 0. (1968) Paramagnetic Relaxation in Solutions, in Transition Metal Chemistry, R. L. Carlin, ed., Dekker, New York, 33–112.Google Scholar
  270. Linder, M., Hendrichs, P. M., Hewitt, J. M., and Massa, D. J. (1985) Use of carbon-carbon nuclear spin diffusion for the study of the miscibility of polymer blends. J. Chem. Phys. 82, 1585–1598.Google Scholar
  271. Lindgren, M., Eaton, G. R., Eaton, S. S., Jonsson, B.-H., Hanvmarström, P., Svensson, M., and Carlsson, U. (1997). Electron spin echo decay as a probe of aminoxyl environment in spin-labeled mutants of human carbonic anhydrase II, J. C. S. Perkin 2, 2549–2554.Google Scholar
  272. Lingam, K. V., Nair, P. G., and Veokataraman, B. (1972) Spin-lattice relaxation studies on semiquinone ions. Proc. Ind. Acad. Sci. A 76, 207–220.Google Scholar
  273. Lloyd, J. P., and Pake, G. E. (1954) Spin Relaxation in Free Radical Solutions Exhibiting Hyperfine Structure. Phys. Rev. 94, 579–591.Google Scholar
  274. Lowe, L. J., and Gade, S. (1967) Density-matrix Derivation of the Spin-Diffusion Equation. Phys. Rev. 156, 817–825.Google Scholar
  275. Mailer, C. and Taylor, C. P. S. (1973) Rapid Adiabatic Passage EPR of Ferricytochrome c: Signal Enhancement and Determination of the Spin-Lattice Relaxation Time. Biochim. Biophys. Acta 322, 195–203.PubMedGoogle Scholar
  276. Mailer, C., Danielson, J. D. S., and Robinson, B. H. (1985) Computer-controlled pulsed electron-paramagnetic-resonance spectrometer. Rev. Sci. Instrum. 56, 1917–1925.Google Scholar
  277. Mailer, C., Haas, D. A., Hustedt, E. J., Gladden, J. G. and Robinson, B. H. (1991) Low Power Electron Paramagnetic Resonance Spin-Echo Spectroscopy. J. Magn. Reson. 91, 475–496.Google Scholar
  278. Mailer, C., Robinson, B. H., and Haas, D. A. (1992) New Developments in Pulsed Electron Paramagnetic Resonance: Relaxation Mechanisms of Nitroxide Spin Labels. Bull. Magn. Reson. 14, 30–35.Google Scholar
  279. Makinen, M. W., and Yim, M. B. (1981) Coordination environment of the active-site metal ion of liver alcohol dehydrogenase. Proc. Natl. Acad. Sci. USA 78, 6221–6225.PubMedCentralPubMedGoogle Scholar
  280. Makinen, M. W., and Wells, G. B. (1987) Application of ESR Saturation Methods to Paramagnetic Metal Ions in Proteins. In Metal Ions in Biological Systems 22, 129–206.Google Scholar
  281. Makinen, M. W., Kuo, L. C., Yim, M. B., Wells, G. B., Fukuyama, J. M., and Kim, J. E. (1985) Ground State Splitting of High-Spin Coe+ as a Probe of Coordination Structure. 1. Dependence of the Splitting on Coordination Geometry. J. Am. Chem. Soc. 107, 5245–5255.Google Scholar
  282. Manenkov, A. A. and Milyaev, V. A. (1970) Paramagnetic Relaxation Processes in Al(NO3)2 9H2O:Fe3+ Single Crystals at Helium Temperatures. Soviet Physics JETP 31, 427–428 (58, 796–799 in Russian)Google Scholar
  283. Manenkov, A. A. and Orbach, R., eds., (1966) Spin-Lattice Relaxation in Ionic Solids, Harper & Row, Publ. New York. Contains reprints of many of the early papers.Google Scholar
  284. Manenkov, A. A. and Pol’skii, Yu. E. (1964) Relaxation Processes in the Paramagnetic Resonance of Gd3+ in CaF2. Soviet Physics JETP 45, 1425–1429 (1963) (18, 985–987 (1964) in transl.)Google Scholar
  285. Manenkov, A. A. and Prokhorov, A. M. (1962) Spin-Lattice Relaxation and Cross-Relaxation Interactions in Chromium Corundum. Soviet Physics JETP 42, 75–83 (54–59 in translation).Google Scholar
  286. Manenkov, A. A., Milyaev, V. A. and Prokhorov, A. M. (1962) The Relaxation Time of Cr3+ and Fe3+ Ions in Single Crystals of Rutile. Soviet Physics Solid State 4, 388–391 (280–283 in translation).Google Scholar
  287. Maresch, G. G., Weber, M., Dubinskii, A. A., and Spiess, H. W. (1992) 2D-ELDOR detection of magnetization transfer of nitroxides in disordered solid polymers. Chem. Phys. Lett. 193, 134–140.Google Scholar
  288. Marchand, R. L., and Stapleton, H. J. (1974) Observation of an H2T7 sin2ORaman spin-lattice relaxation rate in a neodymium salt. Phys. Rev. B 9, 14–21.Google Scholar
  289. Marshall, S. A., Nistor, S. V., and Serway, R. A. (1972) Spin-Lattice Relaxation-Time Measurements of Trivalent Iron in Single-Crystal Calcite. Phys. Rev. B 6, 1688–1689.Google Scholar
  290. Martinelli, M., Pardi, L., Pinzino, C., and Santucci, S. (1975) Dependence of relaxation times of longitudinally detected paramagnetic resonance. Solid State Commun. 17, 211–212.Google Scholar
  291. Martinelli, M., Pardi, L., Pinzino, C., and Santucci, S. (1977) Electron-spin double resonance by longitudinal detection. II. Signal dependence on relaxation times. Phys. Rev. B 16, 164–169.Google Scholar
  292. McBrierty, V. J. (1974) N.m.r. of solid polymers: a review. Polymer 15, 503–520. McConnell, H. M. (1956) Effect of Anisotropic Hyperfine Interactions on Paramagnetic Relaxation in Liquids. J. Chem. Phys. 25, 709–711.Google Scholar
  293. McConnell, H. M. (1961) Spin-Orbit Coupling in Orbitally Degenerate States of Aromatic Ions. J. Chem. Phys. 34, 13–16.Google Scholar
  294. McGarvey, B. R. (1957) Line Widths in the Paramagnetic Resonance of Transition Ions in Solution. J. Phys. Chem. 61, 1232–1237.Google Scholar
  295. Mchaourab, H. S. and Hyde, J. S. (1993a) Continuous wave multiquantum electron paramagnetic resonance spectroscopy. III. Theory of intermodulation sidebands. J. Chem. Phys. 98, 1786–96.Google Scholar
  296. Mchaourab, H. S. and Hyde, J. S. (1993b) Dependence of the Multiple-Quantum EPR Signal on the Spin-Lattice Relaxation Time. Effect of Oxygen in Spin-Labeled Membranes. J. Magn. Reson. B101, 178–184.Google Scholar
  297. Mchaourab, H. S., Christidis, T. C., Froncisz, W., Sczaniecki, P. B. and Hyde, J. S. (1991) Multiple-Quantum Electron-Electron Double Resonance. J. Magn. Reson. 92, 429–33.Google Scholar
  298. Mchaourab, H. S., Christidis, T. C. and Hyde, J. S. (1993) Continuous wave multiquantum electron paramagnetic resonance spectroscopy. IV. Multiquantum Electron-Nuclear Double Resonance.. J. Chem. Phys. 99, 4975–85.Google Scholar
  299. Mchaourab, H. S., Pfenninger, S., Antholine, W. E., Felix, C. C., Hyde, J. S. and Kronek, P. M. H. (1993) Multiquantum EPR of the mixed valence copper site in nitrous oxide reductase. Biophys. J. 64, 1576–9.PubMedCentralPubMedGoogle Scholar
  300. Michalik, J., and Kevan, L. (1978) Temperature Dependence of Electron Spin-Lattice Relaxation of Radiation-Produced Silver Atoms in Polycrystalline Aqueous and Glassy Organic Matrices. Importance of Relaxation by Tunnelling Modes in Disordered Matrices. J. Magn. Reson. 31, 259–270.Google Scholar
  301. Mims, W. B. (1972). Electron Spin Echoes, in Electron Paramagnetic Resonance, S. Geschwind, ed., Plenum Press, N. Y., ch. 4.Google Scholar
  302. Mims, W. B. (1998) Electron Spin Echo Experiments Then and Now, Chapter I.3 in Foundations of Modern EPR, Eaton, G. R., Eaton, S. S., and Salikhov, K. M. eds., World Scientific, Singapore.Google Scholar
  303. Mizoguchi, K., Kume, K., and Shirakawa, H. (1984) Frequency Dependence of Electron Spin-Lattice Relaxation Rate at 5–450 MHz — New Evidence of One Dimensional Diffusive Motion of Electron Spin (Neutral Soliton). Solid State Commun. 50, 213–218.Google Scholar
  304. Mizuta, Y., Kohno, M., and Fujii, K. (1994) Relaxation Mechanism of Free Radicals in Silica Glass Studied by Pulsed-ESR Spectroscopy. Jpn. J. AppL Phys. 33, 1885–1889.Google Scholar
  305. Moll, H. P., Kutter, C., van Tol, J., Zuckerman, H., Wyder, P. (1999) Principles and performance of an electron spin echo spectrometer using far infrared lasers as excitation sources. J. Magn. Reson. 137, 46–58.PubMedGoogle Scholar
  306. Momot, K. I. and Walker, F. A., (1997) Investigation of rotation of axial ligands in six-coordinate low-spin iron(III) tetraphenylporphyrinates: measurement of rate constants from saturation transfer experiments and comparison to molecular mechanics calculations. J. Phys. Chem. A 101, 2787–2795.Google Scholar
  307. Morawski, P., Hoffmann, S. K., Hilczer, W., and Goslar, J. (1997) ESR and Electron Spin Echo Studies of Spin-Lattice Relaxation of Hydrazinium Radical in Li(N2H5)SO4 Single Crystal. Acta Physica Polonica A 91, 1121–1129.Google Scholar
  308. More, K. M., Eaton, G. R., and Eaton, S. S. (1984) Determination of T1 and T2 by simulation of EPR power saturation curves and saturated spectra, application to spin-labeled iron porphyrins. J. Magn. Reson. 60, 54–65.Google Scholar
  309. Muller, F., Hopkins, M. A., Coron, N., Grynberg, M., Brunel, L. C., and Martinez, G. (1989) A high magnetic field EPR spectrometer. Rev. Sci. Instrum. 60, 3681–3684.Google Scholar
  310. Müller, A., and Haeberlen, U. (1996) Temperature-dependent spectral spin diffusion in solid state deuteron magnetic resonance. Chem. Phys. Leu. 248, 249–254.Google Scholar
  311. Muromtsev, V. I. Shteinshneider, N. Ya., Safronov, S. N., Golikov, V. P., Kuznetsov, A. I., and Zhidomirov, G. M. (1975) Spin-lattice relaxation of iminoxyl radicals in frozen solutions. Fiz. Tverd. Tela 17 813–816. [p.517 in transi.]Google Scholar
  312. Murphy, J. (1966) Spin-lattice relaxation due to local vibrations with temperature-independent amplitudes. Phys. Rev. 145, 241–247.Google Scholar
  313. Murphy, T. A., Pawlik, Th., Weidinger, A., Höhne, M., Alcala, R., and Spaeth, J.-M. (1996) Observation of Atomlike Nitrogen in Nitrogen-Implanted Solid C80. Phys. Rev. Leu. 77, 1075–1078 (1996).Google Scholar
  314. Murugusan, R., Cook, J. A., Devasahayam, N., Afeworki, M., Subramanian, S., Tschudin, R., Larsen, J. A., Mitchell, J. B., Russo, A., and Krishna, M. C. (1997) In Vivo Imaging of a Stable Paramagnetic Probe by Pulsed-Radiofrequency Electron Paramagnetic Resonance Spectroscopy. Magn. Reson. Med. 38, 409–414.Google Scholar
  315. Musewald, C., Gilch, P., Hartwich, G., Pöllinger-Dammer, F., Scheer, H., and MichelBeyerle, M. E. (1999) Magnetic Field Dependence of Ultrafast Intersystem-Crossing: A Triplet Mechanism on the Picosecond Time Scale? J. Am. Chem. Soc. 121, 8876–8881.Google Scholar
  316. Nakagawa, K., Candelaria, M. B., Chik, W. W. C., Eaton, S. S., and Eaton, G. R. (1992) Electron-spin relaxation times of chromium(V). J. Magn. Reson. 98, 81–91.Google Scholar
  317. Nakagawa, K., Eaton, S. S., and Eaton, G. R. (1993) Electron Spin Relaxation Times of Irradiated Alanine, Appl. Radial. Isotop. 44, 73–76.Google Scholar
  318. Nechtschein, M. and Hyde, J. S. (1970) Pulsed Electron-Electron Double Resonance in an S =1/2, I = 1/2 System. Phys. Rev. Leu. 24, 672–674.Google Scholar
  319. Niang, A., Ablart, G., Pescia, J., Servant, Y., Duplessix, R., Chanh, N. B., Parys, T., and Misra, S. K. (1995) Electron Paramagnetic Resonance and Spin-Lattice Relaxation in Two-Dimensional Systems. Appl. Magn. Reson. 8, 319–333.Google Scholar
  320. Norris, J. R., Thumauer, M. C., and Bowman, M. K. (1980) Electron Spin echo Spectroscopy and the Study of Biological Structure and Function. Adv. Biol. Med. Phys. 17, 365–416.PubMedGoogle Scholar
  321. Nyberg, G. (1967) Spin-rotational relaxation in solution E.S.R. Mol. Phys. 12, 69–81.Google Scholar
  322. Nyberg, G. (1969) E.S.R. spectrum of the amino-cuprate ion. Mol. Phys. 17, 87–90.Google Scholar
  323. O’Brien, M. C. M. (1964) The dynamic Jahn-Teller effect in octahedrally coordinated d9 ions. Proc. Roy. Soc. A 281, 323–339.Google Scholar
  324. Okabe, N., Ohba, Y., Suzuki, S., Kawata, S., Kikuchi, K., Achiba, Y., Iwaizumi, M. (1995) Fourier transform EPR studies of metallofullerene (La@C82) in CS2 solution. Chem. Phys. Lett. 235, 564–569.Google Scholar
  325. Ong, J.-L., Sloop, D. J., and Lin, T.-S. (1994) Peculiar Spin Dynamics of the Photoexcited Triplet State of Pentacene in a Benzoic Acid Crystal: an ESE Study. Appl. Magn. Reson. 6, 359–371.Google Scholar
  326. Onischuk, A. A., Samoilova, R. I., Strunin, V. P., Chesnokov, E. N., Musin, R. N., Bashurova, V. S., Maryasov, A. G., and Panfilov, V. N. (1998) EPR Investigation of aSi:H Aerosol Particles Formed under Silane Thermal Decomposition. Appl. Magn. Reson. 15, 59–94.Google Scholar
  327. Orbach, R. (1961). On the theory of spin-lattice relaxation in paramagnetic salts, Proc. Phys. Soc. (Lond.) 77, 821–826.Google Scholar
  328. Orton, J. W. (1968) Electron Paramagnetic Resonance, Gordon and Breach, N. Y.Google Scholar
  329. Pace, J. H., Sampson, D. F., and Thorp, J. S. (1960) Spin-Lattice Relaxation Times in Ruby at 34.6 kMc/sec. Phys. Rev. Lett. 4 18–19.Google Scholar
  330. Pake, G. E. and Estle, T. L. (1973) The Physical Principles of Electron Paramagnetic Resonance, 2nd ed., W. A. Benjamin Inc. Reading, MA.Google Scholar
  331. Palmer, G. (1979) Electron paramagnetic resonance of hemoproteins, in The Porphyrins, vol IV, D. Dolphin ed, Academic Press, N.Y., ch. 6, pp. 313–353.Google Scholar
  332. Palmer, G. (1983) Electron paramagnetic resonance of hemoproteins, in Iron Porphyrins, Part II, A. B. P. Lever and H. B. Gray, ed., Addison Wesley, Reading, MA, ch. 2, pp. 43–88.Google Scholar
  333. Parry, J. S., Cloke, F. G. N., Coles, S. J., and Hursthouse, M. B. (1999) Synthesis and Characterization of the First Sandwich Complex of Trivalent Thorium: A Structural Comparison with the Uranium Analogue. J. Am. Chem. Soc. 121, 6867–6871.Google Scholar
  334. Paschenko, S. V., Toropov, Yu. V., Dzuba, S. A., Tsvetkov, Yu. D., and Vorobiev, A. Kh. (1999) Temperature dependence of amplitudes of librational motion of guest spin-probe molecules in organic glasses. J. Chem. Phys. 110, 8150–8154.Google Scholar
  335. Pastor, R. C. and Hoskins, R. H. (1960) Paramagnetic Resonance in Charred Dextrose. J. Chem. Phys. 32, 264–269.Google Scholar
  336. Percival, P. W. and Hyde, J. S. (1975) Pulsed EPR Spectrometer II. Rev. Sci. Instrum. 46, 1522–1529.Google Scholar
  337. Percival, P. W. and Hyde, J. S. (1976) Saturation-Recovery Measurements of the Spin-Lattice Relaxation Times of Some Nitroxides in Solution. J. Magn. Reson. 23, 249–257.Google Scholar
  338. Percival, P. W., Hyde, J. S., Dalton, L. A., and Dalton, L. R. (1975) Molecular and applied modulation effects in electron electron double resonance. V. Passage effects in high resolution frequency and field swept ELDOR. J. Chem. Phys. 62, 4332–4342.Google Scholar
  339. Pescia, J. (1965) La mesure des temps de relaxation spin-réseau très courts. Ann. Phys. 10, 389–406.Google Scholar
  340. Pescia, J. (1998) Microwave Amplitude Modulation in EPR and Short T, Measurement, in Foundations of Modern EPR, S. S. Eaton, K. M. Salikhov, and G. R. Eaton, eds., World Scientific Publ., Singapore.Google Scholar
  341. Pescia, J., Misra, S. K., Zaripov, M., and Servant, Y. (1999). Spin-lattice relaxation in the polymer resin P4VP doped with transition ions Cue+, Cr3+, Mn2+, and Gd3+ possessing weak spin-orbit coupling. Phys. Rev. B 83, 1866–1869.Google Scholar
  342. Pietzak, B., Wailbinger, M., Murphy, T. A., Weidinger, A., Höhne, M., Dietel, E., and Hirsch, A. (1997) Buckminsterfullerene C60: a chemical Faraday cage for atomic nitrogen. Chem. Phys. Lett. 279, 259–263.Google Scholar
  343. Plato, M., Lubitz, W., and Möbius, K. (1981) A Solution ENDOR Sensitivity Study of Various Nuclei in Organic Radicals. J. Phys. Chem. 85, 1202–1219.Google Scholar
  344. Poole, C. P. Jr., (1967) Electron Spin Resonance, Wiley-Interscience, New York.Google Scholar
  345. Poole, C. P. Jr., and Farach, H. A. (1971) Relaxation in Magnetic Resonance, Academic Press, New York.Google Scholar
  346. Portis, A. M. (1956) Spectral Diffusion in Magnetic Resonance. Phys. Rev. 104, 584–588.Google Scholar
  347. Powell, D. H., Merbach, A. E., Gonzalez, G., Brücher, E., Micskei, K., Ottaviani, M. F., Köhler, K., von Zelewsky, A., Grinberg, O. Ya., and Lebedev, Y. S. (1993) MagneticField-Dependent Electronic Relaxation of Gd3+ in Aqueous Solutions of the Complexes [Gd(H2O)8]3+, [Gd(propane-1,3-diamine-N,N,N’,N’-tetraacetate)(H2O)2]-, and [Gd(N,N’-bis[N-methylcarbamoyl)methyl]-3-azapentane-1,5-diamine-3,N,N’-triacetate)(H2O)] of Interest to Magnetic-Resonance Imaging. Heiv. Chim. Acta 76, 2129–2146.Google Scholar
  348. Powell, D. H., Dhubhghaill, O. M. N., Pubanz, D., Helm, L., Lebedev, Y. S., Schlaepfer, W., and Merbach, A. E. (1996) Structure and Dynamic Parameters Obtained from 17O NMR, EPR, and NMRD Studies of Monomeric and Dimeric Gd3+ Complexes of Interest in Magnetic Resonance Imaging: An Integrated and Theoretically Self-Consistent Approach. J. Am. Chem. Soc. 118, 9333–9346.Google Scholar
  349. Prabhananda, B. S. and Hyde, J. S. (1986) Study of molecular motions in liquids by electron spin relaxation: Halogenated p-semiquinone anions in alcohols. J. Chem. Phys. 85, 6705–6712.Google Scholar
  350. Prins, R. (1970) Electronic structure of the ferricenium cation. Electron spin resonance measurements of the cations of ferrocene derivatives. Mol. Phys. 19, 603–620.Google Scholar
  351. Prisner, T. F. (1997) Pulsed High-Frequency/High-Field EPR. Adv. Magn. Optic. Reson. 20, 245–299.Google Scholar
  352. Quine, R. W., Eaton, S. S. and Eaton, G. R. (1992) Saturation recovery electron paramagnetic resonance spectrometer. Rev. Sci. Instrum. 63, 4252–4262.Google Scholar
  353. Rakowsky, M. H., More, K. M., Kulikov, A. V., Eaton, G. R., and Eaton, S. S. (1995) Time- Domain Electron Paramagnetic Resonance as a Probe of Electron-Electron Spin-Spin Interaction in Spin-Labeled Low-Spin Iron Porphyrins. J. Am. Chem. Soc. 117, 2049–57.Google Scholar
  354. Rakowsky, M. H., Zecevic, A., Eaton, G. R., and Eaton, S. S. (1998) Determination of high-spin iron(III)-nitroxyl distances in spin-labeled porphyrins by time-domain EPR. J. Magn. Reson. 131, 97–110.PubMedGoogle Scholar
  355. Ranby, B. G. and Rabek, J. F. (1977) ESR Spectroscopy in Polymer Research. Springer-Verlag, New York.Google Scholar
  356. Rao, K. V. S. (1970) Relaxation Times of VO2+ ion Doped in KNO3 and CsNO3 Single Crystals, Chem. Phys. Lett. 5, 438–440.Google Scholar
  357. Rast, S., Fries, P. H., and Belorizky, E. (1999) Theoretical study of electronic relaxation processes in hydrated Gd3+ complexes in solution. J. Chim. Phys. 96, 1543–1550.Google Scholar
  358. Rataiczak, R. D. and Jones, M. T. (1972) Investigation of the CW Saturation Technique for Measurement of Electron Spin-Lattice Relaxation: Application to the Benzene Anion Radical. J. Chem. Phys. 56, 3898–3911.Google Scholar
  359. Rector, K. D., Thompson, D. E., Merchant, K., and Fayer, M. D. (2000) Dynamics in globular proteins: vibrational echo experiments. Chem. Phys. Lett. 316, 122–128.Google Scholar
  360. Redfield, A. G. (1959) Spatial Diffusion of Spin Energy. Phys. Rev. 116, 315–316.Google Scholar
  361. Ren, J. and Sherry, A. D. (1996) NMR Determination of Crystal Field Parameters and Electron-Spin Correlation Times for the LnDOTP5- Complexes. J. Magn. Reson. B 111, 178–182.Google Scholar
  362. Rengen, S. K., Khakhar, M. P., Prabhananda, B. S., and Venkataraman, B. (1972) Electron Spin-Lattice Relaxation in Organic Free Radicals in Solution. Pure & Appl. Chem. 32, 287–305.Google Scholar
  363. Rengen, S. K., Khakhar, M. P., Prabhananda, B. S., and Venkataraman, B. (1974a) Study of molecular motions in liquids by electron spin lattice relaxation measurements. I. Semiquinone ions in hydrogen bonding solvents. Pramana 3, 95–121.Google Scholar
  364. Rengen, S. K., Khakhar, M. P., Prabhananda, B. S., and Venkataraman, B. (1974b) Study of Molecular Motions in Liquids by Electron Spin Lattice Relaxation Measurements. II. 2,5-Di-tert-butylsemiquinone Ion in Acetonitrile and Tetrahydrofuran. J. Magn. Reson. 16, 35–43.Google Scholar
  365. Rengen, S. K., Bhagat, V. R., Sastry, V. S. S., and Venkataraman, B. (1979) Magnetic Field-Pulsed ELDOR Spectroscopy. J. Magn. Reson. 33, 227–240.Google Scholar
  366. Reuben, J. (1971) Electron Spin Relaxation in Aqueous Solutions of Gadolinium(III)-Aquo, Cacodylate, and Bovine Serum Albumin Complexes. J. Phys. Chem. 75, 3164–3167.Google Scholar
  367. Reynhardt, E. C. and Terblanche, C. J. (1996) 13C Relaxation in Natural Diamond. Bull. Magn Reson. 18 (1–2),145–146.Google Scholar
  368. Robinson, B. H., Haas, D. A., and Mailer, C. (1994) Molecular Dynamics in Liquids: Spin-Lattice Relaxation of Nitroxide Spin Labels. Science 263, 490–493.PubMedGoogle Scholar
  369. Robinson, B. H., Reese, A. W., Gibbons, E., and Mailer, C. (1999) A Unified Description of the Spin-Spin and Spin-Lattice Relaxation Rates Applied to Nitroxide Spin Labels in Viscous Liquids. J. Phys. Chem. B 103, 5881–5894.Google Scholar
  370. Roscher, A., Emsley, L., and Roby, C. (1996) The Effect of Imperfect Saturation in Saturation-Recovery T 1 Measurements. J. Magn. Reson. A 118, 108–112.Google Scholar
  371. Rubinstein, M., Baram, A., and Luz, Z. (1971) Electronic and nuclear relaxation in solutions of transition metal ions with S = 3/2 and 5/2. Mol. Phys. 20, 67–80.Google Scholar
  372. Rübsam, M., Plüschau, M., Schweitzer, P., Dinse, K.-P., Fuchs, D., Rietschel, H., Michel, R. H., Benz, M., Kappes, M. M. (1995) 2D EPR investigation of endohedral La@C82 in solution. Chem. Phys. Lett. 240, 615–621.Google Scholar
  373. Ruf, H. H., and Nastainczyk, W. (1976) Binding of a Metyrapone Spin Label to Microsomal Cytochrome P-450. Eur. J. Biochem. 66, 139–146.PubMedGoogle Scholar
  374. Saalmueller, J. W., Long, H. W., Maresch, G. G., and Spiess, H. W. (1995) Two-Dimensional Field-Step ELDOR. A Method for Characterizing the Motion of Spin Probes and Spin Labels in Glassy Solids. J. Magn. Reson. A 117, 193–208.Google Scholar
  375. Salikhov, K. M. and Tsvetkov, Yu. D. (1979). Electron spin-echo studies of spin-spin interactions in solids, in Time Domain Electron Spin Resonance, ed. by L. Kevan and R. N. Schwartz, Wiley, N. Y., ch. 7.Google Scholar
  376. Samoilova, R. I., Milov, A. D., and Tsvetkov, Yu. D. (1991) Use of the Electron Spin Echo Effect for the Study of Radical Diffusion in Porous Media. Soy. J. Chem. Phys. 8, 898–909.Google Scholar
  377. Santa, T., Hyde, J. S., and Swartz, H. M. (1976) Ion-Exchange in Melanin: An Electron Spin Resonance Study with Lanthanide Probes. Science 192, 1132–1134.Google Scholar
  378. Sama, T. and Hyde, J. S. (1978) Electron spin-lattice relaxation times of melanin. J. Chem. Phys. 69, 1945–1948.Google Scholar
  379. Sastry, V. S. S., Polimeno, A., Crepeau, R. H., and Freed, J. H. (1996a) Studies of spin relaxation and molecular dynamics in liquid crystals by two-dimensional Fourier transform electron spin resonance. I. Cholestane in butoxy benzylidene-octylaniline and dynamic cage effects. J. Chem. Phys. 105, 5753–5772.Google Scholar
  380. Sastry, V. S. S., Polimeno, A., Crepeau, R. H., and Freed, J. H. (1996b) Studies of spin relaxation and molecular dynamics in liquid crystals by two-dimensional Fourier transform electron spin resonance. II. Perdeuterated tempone in butoxy benzylideneoctylaniline and dynamic cage effects. J. Chem. Phys. 105, 5773–5791.Google Scholar
  381. Saxena, S., and Freed, J. H. (1997) Two-Dimensional Electron Spin Resonance and Slow Motions. J. Phys. Chem. A 101, 7998–8008.Google Scholar
  382. Schlick, S., Kevan, L., Toriyama, K., and Iwasaki, M. (1981) The importance of nuclear spin diffusion as an angularly independent relaxation mechanism controlling the matrix ENDOR response of radicals in molecular crystals. J. Chem. Phys. 74, 282–7.Google Scholar
  383. Schmidt, J. (1989) Spin-Lattice and Spin-Spin Relaxation in Photo-Excited Triplet states in Molecular Crystals, in Relaxation Processes in Molecular Excited States, J. Funfschilling, ed., Kluwer Academic Publishers.Google Scholar
  384. Schmidt, J., van den Heuvel, D. J., Henstra, A., Lin, T.-S., and Wenckebach, W. Th. (1992) Polarizing Nuclear Spins via Photo-Excited Triplet States. Israel J. Chem. 32, 165–172.Google Scholar
  385. Schmidt-Rohr, K., and H. W. Spiess (1994) Multidimensional Solid-State NMR and Polymers. Academic Press, N. Y.Google Scholar
  386. Schneider, D. J., and Freed, J. H. (1989) Calculating Slow Motional Magnetic Resonance Spectra: A User’s Guide, in Biological Magnetic Resonance, Vol. 8, Berliner, L. J., and Reuben, J., eds., Plenum Press, N. Y. ch. 1.Google Scholar
  387. Scholes, C. P., Isaacson, R. A., and Feher, G. (1971) Determination of the zero-field splitting of Fe+3 in heure proteins from the temperature dependence of the spin-lattice relaxation rate. Biochim. Biophys. Acta 244, 206–210.PubMedGoogle Scholar
  388. Scholes, C. P., Janakiraman, R., Taylor, H., and King, T. E. (1984) Temperature Dependence of the Electron Spin-Lattice Relaxation Rate from Pulsed EPR of CuA and Heine a in Cytochrome c Oxidase. Biophys. J. 45, 1027–1030.PubMedCentralPubMedGoogle Scholar
  389. Schreurs, J. W. H., Blomgren, G. E., and Fraenkel, G. K. (1960) Anomalous Relaxation of Hyperfine Components in Electron Spin Resonance. J. Chem. Phys. 32, 1861–1869.Google Scholar
  390. Schulz, C. E., Brandon, S., and Debrunner, P. G. (1990) Spin Fluctuation Rates in Myoglobin Azide: Comparison of Mossbauer and EPR Results. Hyperfine Interactions 58, 2399–2404.Google Scholar
  391. Schwartz, R. N., Jones, L. L., and Bowman, M. K. (1979) Electron Spin-Echo Studies of Nitroxide Free Radicals in Liquids. J. Phys. Chem. 83, 3429–3434.Google Scholar
  392. Schwartz, L. J., Stillman, A. E., and Freed, J. H. (1982) Analysis of electron spin echoes by spectral representation of the stochastic Liouville equation, J. Chem. Phys. 77, 5410–5425.Google Scholar
  393. Schweiger, A. and Ernst, R. R. (1988) Pulsed ESR with Longitudinal Detection. A Novel Recording Technique. J. Magn. Reson. 77, 512–523.Google Scholar
  394. Sczaniecki, P. B., Hyde, J. S., and Froncisz, W. (1990) Continuous Wave Multi-Quantum EPR Spectroscopy. J. Chem. Phys. 93, 3891–8.Google Scholar
  395. Sczaniecki, P. B., Hyde, J. S. and Froncisz, W. (1991) Continuous Wave Multi-Quantum EPR Spectroscopy II: Spin-System Generated Intermodulation Sidebands. J. Chem. Phys. 94, 5907–16.Google Scholar
  396. Seiter, M., Budker, V., Du, J.-L., Eaton, G. R., and Eaton, S. S. (1998) Interspin distances determined by time domain EPR of spin-labeled high-spin methemoglobin, Inorg. Chim. Acta 273, 354–366.Google Scholar
  397. Shibata, Y., Kurita, A., and Kushida, T. (1996) Transient hole-burning spectroscopy of Znprotoporphyrin-substituted myoglobin. J. Luminesc. 66&67, 13–18.Google Scholar
  398. Shushakov, O. A., Dzyuba, S. A., and Tsvetkov, Yu. D. (1986) Dielectric 13-relaxation in supercooled liquids and mobility of nitroxyl radicals from pulsed ESR data. Khim. Fiz. 5, 1340–1345 (p. 2713 in transi.).Google Scholar
  399. Shushakov, O. A., Dzyuba, S. A., and Tsvetkov, Yu. D. (1986) Superslow Rotation of Nitroxyl Radicals in Aqueous Glycerol Solution. Soy. J. Chem. Phys. 3, 2713–2723.Google Scholar
  400. Shushakov, O. A., Dzyuba, S. A., and Tsvetkov, Yu. D. (1989) Barriers for internal rotation of methyl groups screening nitroxide paramagnetic fragments as determined by an electron spin-echo technique. J. Struct. Chem. 30, 75–80.Google Scholar
  401. Spiro, T. G. (1983) The Resonance Raman Spectroscopy of Metalloporphyrins and Herne Proteins, in Iron Porphyrins Part Two, A. B. P. Lever and H. B. Gray, eds., Addison-Wesley, Reading. MA. Pp. 89–159, especially p. 109.Google Scholar
  402. Standley, K. J. and Vaughan, R. A. (1969) Electron Spin Relaxation Phenomena in Solids. Plenum Press, New York.Google Scholar
  403. Stephen, M. J. and Fraenkel, G. K. (1960) Theory of Saturation of Electron Spin Resonance Spectra, J. Chem. Phys. 32, 1435–1443.Google Scholar
  404. Stephens, E. M. (1989) Gadolinium as an EPR Probe, in Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice, Bünzli, J.-C. G., and Choppin, G. R., eds., Elsevier, Amsterdam, pp. 181–217.Google Scholar
  405. Stevens, K. W. H. (1969) Paramagnetic Resonance, Reports Prog. Phys. 30, 189–226.Google Scholar
  406. Stevens, S. B., and Stapleton, H. J. (1990) Electron-spin-lattice relaxation in Yb3+ -doped silicate glass. Phys. Rev. 42, 9794–9801.Google Scholar
  407. Stillman, A. E., and Schwartz, R. N. (1979) Theory of Spin Echoes in Nonviscous and Viscous Liquids, in Time Domain Electron Spin Resonance, Kevan, L., and Schwartz, R. N., eds., Wiley, New York, ch. 5.Google Scholar
  408. Stillman, A. E., Schwartz, L. J., and Freed, J. H. (1980) Direct determination of rotational correlation time by electron-spin echoes. J. Chem. Phys. 73, 3502–3503; erratum (1982) J. Chem. Phys. 76, 5658.Google Scholar
  409. Stinson, D. G., and Stapleton, H. J. (1983) Li tunnelling effects on spin-lattice relaxation rates of a color center in CaO:Li. Phys. Rev. B 27, 5386–5393.Google Scholar
  410. Stösser, R., Sebastian, S., Scholz, G., Willer, M., Jeschke, G., Schweiger, A., and Nofz, M. (1999) Pulse EPR Spectroscopy of Cue+-Doped Inorganic Glasses. Appl. Magn. Reson. 16, 507–528.Google Scholar
  411. Strangeway, R. A., Mchaourab, H. S., Luglio, J. R., Froncisz, W., and Hyde, J. S. (1995) A general purpose multiquantum electron paramagnetic resonance spectrometer. Rev. Sci. Instrum. 66, 4516–28.Google Scholar
  412. Strutz, T., Witowski, A. M., and Wyder, P. (1992) Spin-Lattice Relaxation at High Magnetic Fields. Phys. Rev. Lett. 68, 3912–3915.PubMedGoogle Scholar
  413. Subczynski, W. K., and Hyde, J. S. (1981) The diffusion-concentration product of oxygen in lipid bilayers using the spin-label T1 method. Biochim. Biophys. Acta 643, 283–291.PubMedGoogle Scholar
  414. Subczynski, W. K., Hyde, J. S., and Kusumi, A. (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc. Natl. Acad. Sci. USA 86, 4474–4478.PubMedCentralPubMedGoogle Scholar
  415. Subczynski, W. K., Hyde, J. S., and Kusumi, A. (1991) Effect of Alkyl Chain Unsaturation and Cholesterol Intercalation on Oxygen Transport in Membranes: A Pulse ESR Spin Labeling Study. Biochem. 30, 8578–8590.Google Scholar
  416. Subczynski, W. K., Hopwood, L. E., and Hyde, J. S. (1992a) Is the Mammalian Cell Plasma Membrane a Barrier to Oxygen Transport? J. Gen. Physiol. 100, 69–87.PubMedGoogle Scholar
  417. Subczynski, W. K., Renk, G. E., Crouch, R. K., Hyde, J. S., and Kusumi, A. (1992b) Oxygen diffusion-concentration product in rhodopsin as observed by a pulse ESR spin labeling method. Biophys. J. 63, 573–577.PubMedCentralPubMedGoogle Scholar
  418. Subczynski, W. K., Lewis, R. N. A. H., McElhaney, R. N., Hodges, R. S., Hyde, J. S., and Kusumi, A. (1998) Molecular Organization and Dynamics of 1-Palmitoyl-2oleoylphosphatidylcholine Bilayers Containing a Transmembrane a-Helical peptide. Biochem. 37, 3156–3164.Google Scholar
  419. Sueishi, Y., and Kuwata, K. (1989) Pressure Effects on the Electron Spin Relaxation of Several Radicals in Solution. Chem. Phys. Lett. 160, 640–643.Google Scholar
  420. Sugano, T., Mailer, C., and Robinson, B. H. (1987) Direct detection of very slow two jump processes by saturation recovery electron paramagnetic resonance spectroscopy. J. Chem. Phys. 87, 2478–2488.Google Scholar
  421. Sur, S. K., and Bryant, R. G. (1995) Nuclear-and Electron-Spin Relaxation Rates in Symmetrical Iron, Manganese, and Gadolinium Ions. J. Phys. Chem. 99, 6301–6308.Google Scholar
  422. Suter, D., and Ernst, R. R. (1982) Spectral spin diffusion in the presence of an extraneous dipolar reservoir. Phys. Rev. B 25, 6038–6041.Google Scholar
  423. Suter, D., and Ernst, R. R. (1985) Spin diffusion in resolved solid-state NMR spectra. Phys. Rev. B 32, 5608–5627.Google Scholar
  424. Szczepaniak, L. S., and Bryant, R. G. (1991) Proton nuclear magnetic relaxation in aqueous copper(II) amine chelate complexes. Inorg. Chim. Acta 184, 7–11.Google Scholar
  425. Tabti, T., Goldman, M., Jacquinot, J.-F., Fermon, C., and Le Goff, G. (1997) Relaxation without spin diffusion in fractal systems: Polymers in glassy solutions. J. Chem. Phys. 107, 9239–9251.Google Scholar
  426. Torchia, D. A., (1984) Solid State NMR Studies of Protein Internal Dynamics. Ann. Rev. Biophys. Bioeng. 13, 125–144.Google Scholar
  427. Toropov, Yu. V., Dzuba, S. A., Tsvetkov, Yu. D., Monaco, V., Formaggio, F., Crisma, M., Toniolo, C., and Raap, J. (1998) Molecular Dynamics and Spatial Distribution of TOAC Spin-Labelled Peptaibols Studied in Glassy Liquid by Echo-Detected EPR Spectroscopy. Appl. Magn. Reson. 15, 237–246.Google Scholar
  428. Tóth, É., Connac, F., Helm, L., Adzamli, K., and Merbach, A. E. (1998) 17O-NMR, EPR, and NMRD Characterization of [Gd(DTPA-BMEA)(H2O)]: A Neutral Contrast Reagent. Eur. J. Inorg. Chem. 2017–2021.Google Scholar
  429. Tóth, É., Helm, L., Kellar, K. E., and Merbach, A. E. (1999) Gd(DTPA-bisamide)alkyl Coplymers: A Hint for the Formation of MRI Contrast Reagents with Very High Relaxivity. Chem. Eur. J. 5, 1202–1211.Google Scholar
  430. Townsend, M. G., and Weissman, S. I. (1960) Possible Symptom of the Jahn-Teller Effect in the Negative Ions of Coronene and Triphenylene. J. Chem. Phys. 32, 309–313.Google Scholar
  431. Trinbgali, A. E., and Brenner, H. C. (1998) Spin-lattice relaxation and ODMR line narrowing of the photoexcited state of pyrene and polycrystalline Shpol’skii hosts and glassy matrices. Chem. Phys. 226, 187–200.Google Scholar
  432. Tritt-Goc, J., Goslar, J., Hilczer, W., Hoffmann, S. K., and Augustyniak, M. A. (1993) Electron Spin Echo Envelope Modulation Analysis of SeO3- Radical in (NH4)3H(Se04)2 Single Crystal. Acta Physica Polonica A 84, 1131–1141.Google Scholar
  433. Tse, D., and Hartmann, S. R. (1968) Nuclear Spin-Lattice Relaxation via Paramagnetic Centers without Spin Diffusion. Phys. Rev. Lett. 21, 511–514.Google Scholar
  434. Tsvetkov, Yu. D. (1983) Electron Spin Echo Study of the Steric Characteristics of the Formation and Reactions of Radicals in a Solid Phase. Russ. Chem. Rev. 52, 866–880. (1514–1537 in Russian)Google Scholar
  435. Tsvetkov, Yu. D. (1990) Physicochemical Applications of the Electron Spin Echo Method. Bulletin Acad. Sci. USSR, Div. Chem. Sci. 39, 2158–2172.Google Scholar
  436. Tsvetkov, Yu. D. (1998) Electron Spin Echo in Siberia. Chapter I.4 in Foundations of Modern EPR, Eaton, G. R., Eaton, S. S., and Salikhov, K. M. eds., World Scientific, Singapore.Google Scholar
  437. Tsvetkov, Yu. D. and Dzyuba, S. A. (1990) Pulsed ESR and molecular motions. Appl. Magn. Reson. 1, 179–194.Google Scholar
  438. Valiev, K. A., and Zaripov, M. M. (1962) On the theory of spin-lattice relaxation in liquid solutions of electrolytes. Soviet Phys. JETP 14, 545–549.Google Scholar
  439. Van de Ven, F. J. M. (1995) Multidimensional NMR in Liquids — Basic Principles and Experimental Methods. Wiley-VCH, New York, page 109.Google Scholar
  440. Van Kooten, J. F. C., and Schmidt, J. (1985) Spin-spin and spin-lattice relaxation in the triplet state of AB-pairs in isotopically mixed crystals of naphthalene. Mol. Phys. 55, 351–361.Google Scholar
  441. Van’t Hof, C. A., and Schmidt, J. (1979) The effect of spectral diffusion on the phase coherence of phosphorescent triplet spins. Mol. Phys. 38, 309–320.Google Scholar
  442. Van Vleck, J. H. (1960) The Puzzle of Spin-Lattice Relaxation at Low Temperatures, in Quantum Electronics, C. H. Townes, ed., Columbia Univ. Press, N.Y.Google Scholar
  443. Van Vleck, J. H. (1961) Recent Developments in Spin-Lattice Relaxation, in Advances in Quantum Electronics, J. R. Singer, ed., Columbia Univ. Press, N.Y.Google Scholar
  444. Van Wyk, J. A., Reynhardt, E. C., High, G. L., and Kiflawi, I. (1997) The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond. J. Applied Phys. D. Applied Physics 30, 1790–1793.Google Scholar
  445. Venkataraman, B. (1982) Time Resolved Electron Spin Resonance Spectroscopy. Current Science 51, 397–400.Google Scholar
  446. Vemoux, D., Zinsou, P. K., Zaripov, M., Ablart, G., Pescia, J., Misra, S. K., Rakhmatullin, R., and Orlinskii, S. (1996) Electron spin lattice relaxation of Yb3+ and Gd3+ ions in glasses. Appl. Magn. Reson. 11, 493–498.Google Scholar
  447. Vugman, N. V., and Amaral, M. R., Jr. (1990) Influence of localized anharmonic vibrations on electron paramagnetic resonance spectroscopy. Phys. Rev. B 42, 9837–9842.Google Scholar
  448. Vugman, N. V., Grillo, M. L. Netto, and Jain, V. K. (1992) Dynamic effects in Ni(III) and Pd(III) cyanides in KCl and NaCI studied by EPR spectroscopy. Chem. Phys. Lett. 188, 419–422.Google Scholar
  449. Wajnberg, E., and Alves, O. C. (1996) Spin-Lattice Relaxation of Denatured Nitrosyl Hemoproteins. J. Magn. Reson. B 113, 119–124.PubMedGoogle Scholar
  450. Wajnberg, E., Alonso, A., Nascimento, O. R., and Tabak, M. (1992) Spin-lattice relaxation of a nitroxide radical in a single crystal. Chem. Phys. Lett. 199, 111–118.Google Scholar
  451. Wang, J., Jack, K. S., and Natansohn, A. L. (1997) Spin diffusion and spin-lattice relaxation in multiphase polymers. J. Chem. Phys. 107, 1016–1020.Google Scholar
  452. Weber, R., Harbridge, J., Eaton, G. R., and Eaton, S. S., unpublished results.Google Scholar
  453. Weger, M. (1960) Passage Effects in Paramagnetic Resonance Experiments. The Bell System Technical Journal 39, 1013–1112.Google Scholar
  454. Weibull, W. (1951) A Statistical Distribution Function of Wide Applicability. J. Appl. Mechanics: Trans. ASME Ser. E 18, 293–297.Google Scholar
  455. Weiden, N., KAss, H., Dinse, K.-P. (1999) Pulse Electron Paramagnetic Resonance (EPR) and Electron-Nuclear Resonance (ENDOR) Investigation of N@C60 in Polycrystalline C60. J. Phys. Chem. B. 103, 9826–9830.Google Scholar
  456. Weigand, F., Demco, D. E., Blümich, B., and Spiess, H. W. (1996) Spatially Resolved NMR Spin Diffusion in Solid Polymers. J. Magn. Reson. A 120, 190–200.Google Scholar
  457. Weil, J. A., Bolton, J. R., Wertz, J. E. (1994). Electron Paramagnetic Resonance, Wiley, N. Y., 100–105, 213–234.Google Scholar
  458. Weissman, S. I., Feher, G., and Gere, E. A. (1957) The Spin Relaxation Time of Triphenylmethyl at Low Temperatures. J. Am. Chem. Soc. 79, 5584–5585.Google Scholar
  459. Wells, G. B., Yim, M. B., and Makinen, M. W. (1992) The influence of oxygen-17 enriched oxygen-donor ligands on the electronic spin relaxation behavior of paramagnetic metal ions. Mol. Phys. 75, 1285–1300.Google Scholar
  460. Wenckebach, W. Th., and Poulis, N. J. (1973) Spin Dynamics in Paramagnetic Crystals., 17`11 Congress Ampere, V. Hovi, ed., North-Holland Publ., pp. 120–142.Google Scholar
  461. Whalley, E. and Labbé, H. J. (1969) Optical Spectra of Orientationally Disordered crystals. III. Infrared Spectra of the Sound Waves. J. Chem. Phys. 51, 3120–3127.Google Scholar
  462. Williams, F. I. B., Krupka, D. C., and Breen, D. P. (1969) Relaxation in a Jahn-Teller System. II. Phys. Rev. 179, 241–254.Google Scholar
  463. Wilson, G. E., Jr., and Cohn, M. (1977) Magnetic Resonance Studies of the Manganese Guanosine Di-and Triphosphate Complexes with Elongation Factor Tu. J. Biol. Chem. 252, 2004–2009.PubMedGoogle Scholar
  464. Wilson, R., and Kivelson, D. (1966a) ESR Linewidths in Solution. I. Experiments on Anisotropic and Spin-Rotational Effects. J. Chem. Phys. 44, 154–168.Google Scholar
  465. Wilson, R., and Kivelson, D. (1966b) ESR Linewidths in Solution. III. Experimental Study of the Solvent Dependence of Anisotropic and Spin-Rotational Effects. J. Chem. Phys. 44, 4440–4444.Google Scholar
  466. Wilson, R., and Kivelson, D. (1966c) ESR Linewidths in Solution. IV. Experimental Study of Anisotropic and Spin-Rotational Effects in Copper Complexes. J. Chem. Phys. 44, 4445–4452.Google Scholar
  467. Witowski, A. M. and Bardyszewski, W. (1995) Spin-Lattice relaxation in high magnetic fields — beyond the Debye approximation. Solid State Commun. 94, 9–12.Google Scholar
  468. Witowski, A. M., Kutter, C., and Wyder, P. (1997) Spin-Lattice Relaxation in High Magnetic Fields: A Tool for Electron-Phonon Coupling Studies. Phys. Rev. Lett. 78, 3951–3954.Google Scholar
  469. Wolf, E. L. (1966) Diffusion Effects in the Inhomogeneously Broadened Case: High-Temperature Saturation in the F-Center Electron Spin Resonance. Phys. Rev. 142, 555–569.Google Scholar
  470. Wolfe, J. P. (1973) Direct Observation of a Nuclear Spin Diffusion Barrier. Phys. Rev. Lett. 31, 907–910.Google Scholar
  471. Woodward, A. E., and Bovey, F. A., eds. (1980) Polymer Characterization by ESR and NMR, American Chemical Society, Washington, D.C.Google Scholar
  472. Yim, M. B., Kuo, L. C., Makinen, M. W. (1982) Determination of the Zero-Field Spitting Constants of High-Spin Metalloproteins by a Continuous-Wave Microwave Saturation Technique. J. Magn. Reson. 46, 247–256.Google Scholar
  473. Yin, J.-J., and Hyde, J. S. (1987) Spin-Label Saturation-Recovery Electron Spin Resonance Measurements of Oxygen Transport in Membranes. Z. Physikal. Chem Neue Folge 153, 57–65.Google Scholar
  474. Yin, J.-J., and Hyde, J. S. (1989) Use of high observing power in electron spin resonance saturation-recovery experiments in spin-labeled membranes. J. Chem. Phys. 91, 6029–6035.Google Scholar
  475. Yin, J.-J., Pasenkiewicz-Gierula, M., and Hyde, J. S. (1987) Lateral Diffusion of lipids in membranes by pulse saturation recovery electron spin resonance. Proc. Natl. Acad. Sci. USA 84, 964–968.PubMedCentralPubMedGoogle Scholar
  476. Yin, J.-J., Feix, J. B., and Hyde, J. S. (1988) Solution of the nitroxide spin-label spectral overlap problem using pulse electron spin resonance. Biophys. J. 53, 525–531.PubMedCentralPubMedGoogle Scholar
  477. Yin, J.-J., Feix, J. B., and Hyde, J. S. (1990) Mapping of collision frequencies for stearic acid spin-labels by saturation-recovery electron paramagnetic resonance. Biophys. J. 58, 713–720.PubMedCentralPubMedGoogle Scholar
  478. Zahlan, A. B., editor (1968) Excitons, Magnons and Phonons in Molecular Crystals. Proceedings of an International Symposium Held at the Physics Department of the American University of Beirut, Lebanon. Cambridge University Press. See page 65 for phonon density of states curves.Google Scholar
  479. Zecevic, A., Eaton, G. R., Eaton, S. S. and Lindgren, M. (1998) Dephasing of electron spin echoes for nitroxyl radicals in glassy solvent by non-methyl and methyl protons. Mol. Phys. 95, 1255–1263.Google Scholar
  480. Zhang, W., and Cory, D. G. (1998) First Direct Measurement of the Spin Diffusion Rate in a Homogeneous Solid. Phys. Rev. Lett. 80, 1324–1327Google Scholar
  481. Zhao, J., Chin, Y. H., Liu, Y., Jones, A. A., Inglefield, P. T., Kambour, R. P., and White, D. M. (1995) Deuterium NMR Study of Phenyl Group Motion in Glassy Polystyrene and a Blend of Polystyrene with Polyphenylene Oxide. Macromolecules 28, 3881–3889.Google Scholar
  482. Zhidomirov, G. M. and Salikhov, K. M. (1969) Contribution to the theory of spectral diffusion in magnetically diluted solids. Sov. Phys. JETP 29, 1037–1040.Google Scholar
  483. Zhou, Y., Bowler, B., Eaton, S. S., and Eaton, G. R. (1999) Electron spin relaxation rates for S =1/2 molecular species in glassy matrices and magnetically dilute solids at temperatures between 10 and 300 K. J. Magn. Reson. 139, 165–174.PubMedGoogle Scholar
  484. Zhou, Y., Bowler, B., Eaton, G. R., and Eaton, S. S. (2000) Electron Spin-Lattice Relaxation Rates for High-Spin Fe(III) Complexes in Glassy Solvents at Temperatures between 6 and 298 K. J. Magn. Reson. in press.Google Scholar
  485. Ziman, J. M. (1960) Electrons and Phonons. The Theory of Transport Phenomena in Solids. Oxford University Press, London. See especially Chapter 1.Google Scholar
  486. Zimmerman, R., Spiering, H., and Ritter, G. (1974) Mossbauer spectra of the tetrakis-(1,8naphthyridine)iron(II)perchlorate in external magnetic fields. Evidence of slow relaxation in paramagnetic iron(II). Chem. Phys. 4, 133–141.Google Scholar
  487. Zinsou, P. K., Vergnoux, D., Ablart, G., Pescia, J., Misra, S. K., and Berger, R. (1996) Temperature and concentration dependences of the spin-lattice relaxation rate in four borate glasses doped with Fe2O3. Appl. Magn. Reson. 11, 487–492.Google Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • Sandra S. Eaton
    • 1
  • Gareth R. Eaton
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of DenverDenverUSA

Personalised recommendations