Advertisement

Double Electron-Electron Resonance

Methodical Advances and Application to Disordered Systems
  • G. Jeschke
  • M. Pannier
  • H. W. Spiess
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)

Abstract

Determination of distances larger than about 2 nm by EPR with high precision requires pulse EPR experiments that can separate electron-electron couplings from all other contributions to the Hamiltonian and from relaxational broadening. The double electron-electron resonance (DEER) experiment as one of these methods is described and guidelines for its use are given. It is concluded that the experiment requires only minor modifications of commercial hardware and can be used for measurements in the distance range between 1.5 and 8 nm. For distances up to 5 nm, precision in non-crystalline systems is usually limited by conformational distributions rather than by the method. Four-pulse DEER is demonstrated to allow for the determination of broad distance distributions even at the lower end of this distance range by overcoming dead time problems. The measurement of ion cluster sizes and intercluster distances in ionomers is described to exemplify application of this method to a problem for which other methods for distance determination fail.

Keywords

Pump Pulse Diblock Copolymer Spin Probe Distance Determination Intercluster Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astashkin A.V., Hara H., and Kawamori A. (1998) The pulsed electron-electron double resonance and “2+1” electron spin echo study of the oriented oxygen-evolving and Mn-depleted preparations of photosystem II,J. Chem. Phys. 108, 3805–3812.CrossRefGoogle Scholar
  2. Berliner L.J. (Ed.) (1976) Spin Labeling: Theory and Applications, Vol. 1, Academic Press, New YorkGoogle Scholar
  3. Berliner L.J. (Ed.) (1979), Spin Labeling: Theory and Applications, Vol. 2, Academic Press, New YorkGoogle Scholar
  4. Berliner L.J. and Reuben J. (Eds.) (1989) Biological Magnetic Resonance, Vol. 8, Plenum, New YorkGoogle Scholar
  5. Borbat P.P. and Freed J.H. (1999) Multiple-quantum ESR and distance measurements, Chem. Phys. Lett., 313, 145–154.CrossRefGoogle Scholar
  6. Eisenberg A., Kim J.-S. (1998) Introduction to Ionomers, Wiley-Interscience, New York.Google Scholar
  7. Enemark J.H., Astashkin A., Kedia R., Kozliouk V., McMaster J., Pacheco A, Raitsimring A.M., and Valek M. (1999) Pulsed electron-electron double resonance (ELDOR) studies of Mo(V)/Fe(III) centers, J. Inorg. Biochem. 74, 123–123.Google Scholar
  8. Ernst R.R., Bodenhausen, G., and Wokaun A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon, Oxford.Google Scholar
  9. Hara H., Kawamori A., Astashkin A.V., and Ono T. (1996) The distances from tyrosine D to redox-active components on the donor side of Photosystem II determined by pulsed electron-electron double resonance, Biochim. Biophys. Acta Bioenergetics 1276, 140–146.CrossRefGoogle Scholar
  10. Jeschke G., Pannier M., Godt A., and Spiess H.W. (2000), Dipolar Spectroscopy and Spin Alignment in Electron Paramagnetic Resonance, Chem. Phys. Lett., submitted.Google Scholar
  11. Klauder J.R. and Anderson P.W. (1962) Spectral Diffusion Decay in Spin Resonance Experiments, Phys. Rev. 125, 912–932.CrossRefGoogle Scholar
  12. Kurshev V.V., Raitsimring, A.M., Tsvetkov Yu.D. (1989) Selection of Dipolar Interaction by the “2+1” Pulse Train ESE, J. Magn. Reson. 81, 441–454.Google Scholar
  13. Larsen R.G. and Singel, D.J. (1993) Double Electron-Electron Resonance Spin-Echo Modulation — Spectroscopic Measurement of Electron-Spin Pair Separations in Orientationally Disordered Solids, J. Chem. Phys. 98, 5134–5146.CrossRefGoogle Scholar
  14. Martin R.E., Pannier M., Diederich F., Gramlich V., Hubrich M., and Spiess H.W. (1998) Determination of end-to-end distances in a series of TEMPO diradicals of up to 2.8 nm length with a new four-pulse double electron electron resonance experiment, Angew. Chem. Int. Ed. 37, 2834–2837.CrossRefGoogle Scholar
  15. Maryasov A.G., Tsvetkov Y.D., and Raap J. (1998) Weakly coupled radical pairs in solids: ELDOR in ESE structure studies, Appl. Magn. Reson. 14, 101–113.CrossRefGoogle Scholar
  16. Milov A.D., Salikhov K.M., and Shirov, M.D. (1981) Application of ELDOR in electron-spin echo for paramagnetic center space distributions in solids, Fiz. Tverd. Tela (Leningrad) 23, 975–982.Google Scholar
  17. Milov, A.D., Ponomarev A.B., and Tsvetkov Y.D. (1984) Electron electron double-resonance in electron-spin echo-model biradical systems and the sensitized photolysis of decalin, Chem. Phys. Lett. 110, 67–72.CrossRefGoogle Scholar
  18. Milov A.D.; Maryasov, A.G.; Tsvetkov, Y.D. (1998) Pulsed electron double resonance (PELDOR) and its applications in free-radicals research, Appl. Magn. Reson. 15, 107–143.CrossRefGoogle Scholar
  19. Pannier M., Veit S., Godt A., Jeschke G., Spiess H.W. (2000) Dead-time free measurement of dipole-dipole interactions between electron spins, J. Magn. Reson. 142, 331–340.PubMedCrossRefGoogle Scholar
  20. Pannier M., Schädler V., Schöps M., Wiesner. U., Jeschke G., and Spiess H.W. (2000), Determination of Ion Cluster Sizes and Cluster-to-Cluster Distances in Ionomers by For-Pulse Double Electron Electron Resonance Spectroscopy, Macromolecules, submitted.Google Scholar
  21. Pfannebecker V., Klos M., Hubrich M., Volkmer T., Heuer A, Wiesner U., and Spiess H.W., (1996) Determination of end-to-end distances in oligomers by pulsed EPR, J. Phys. Chem. 100, 13428–13432.CrossRefGoogle Scholar
  22. Saxena S. and Freed J.H. (1996) Double quantum two-dimensional Fourier transform electron spin resonance: Distance measurements, Chem. Phys. Lett. 251, 102–110.CrossRefGoogle Scholar
  23. Saxena S. and Freed J.H. (1997) Theory of double quantum two-dimensional electron spin resonance with application to distance measurements, J. Chem. Phys. 107, 1317–1340.CrossRefGoogle Scholar
  24. Schädler V., Franck A., Wiesner U., and Spiess H.W. (1997) EPR studies on telechelic polymers: Characterization of ion multiplets, Macromolecules, 30, 3832–3838.CrossRefGoogle Scholar
  25. Schädler V., Kniese V., Thum-Albrecht T., Wiesner U., and Spiess H.W. (1998) Selfassembly of ionically end-capped diblock copolymers, Macromolecules 31, 4828–4837.PubMedCrossRefGoogle Scholar
  26. Schlick S. (Ed.) (1996) Ionomers: Characterization, Theory, and Applications, CRC Press, New York.Google Scholar
  27. Zentel R., Galli G., Ober C.K. (Eds.) (1997) Manipulation of Organization in Polymers Using Tandem Molecular Interactions, Macromol. Symp. 117, 1–304.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • G. Jeschke
    • 1
  • M. Pannier
    • 1
  • H. W. Spiess
    • 1
  1. 1.Max-Planck-Institute for Polymer ResearchMainzGermany

Personalised recommendations