Distance Measurements by CW and Pulsed EPR

  • Sandra S. Eaton
  • Gareth R. Eaton
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)


Distances between unpaired electrons ranging from ca. 5 Å to > 70 Å can be measured by a combination of continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) techniques. An overview of these techniques is provided as an introduction to the volume.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Dipolar Interaction Spin Label Nitroxyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, T. P. and Bos, W. G. (1967). A Dimensional Analysis of Magnetic Susceptibility Calculations. J. Chem. Ed. 44, 438–441.Google Scholar
  2. Abragam, A. and Bleaney, B. (1970). Electron Paramagnetic Resonance of Transition Ions. Oxford University Press, Oxford.Google Scholar
  3. Akita, T., Mazaki, Y., and Kobayashi, K. (1995). Ferromagnetic Spin Interaction in a Crystalline Molecular Complex Formed by Inter-heteromolecule Hydrogen Bonding: a 1:1 Complex of Phenyl Nitronyl Nitroxide Radical and Phenylboronic Acid. J. Chem. Soc. Chem. Commun. 1861–1862.Google Scholar
  4. Altenbach, C., Flitsch, S. L., Khorana, H. G., and Hubbell, W. L. (1989). Structural Studies on Transmembrane Proteins. 2. Spin Labeling of Bacteriorhodopsin Mutants at Unique Cysteines. Biochemistry 28, 7806–7812.PubMedGoogle Scholar
  5. Anderson, D. J., Hanson, P., McNulty, J., Millhauser, G., Monaco, V., Formaggio, F., Crisma, M., and Tomolo, C. (1999). Solution Structures of TOAC-Labeled Trichogin GA IV Peptides from Allowed (g ≈ 2) and Half-Field Electron Spin Resonance. J. Am. Chem. Soc. 121, 6919–6927.Google Scholar
  6. Arcangeli, C., Bizzarri, A. R., and Cannistraro, S. (1998). Role of interfacial water in the molecular dynamics-simulated dynamical transition of plastocyanin. Chem. Phys. Lett. 291, 7–14.Google Scholar
  7. Astashkin, A. V., Hara, H., and Kawamori, A. (1998) The pulsed electron-electron double resonance and “2+1” electron spin echo study of the oriented oxygen-evolving and Mn-depleted preparations of photosystem II. J. Chem. Phys. 108, 3805–3812.Google Scholar
  8. Banci, L., Bertini, I., Huber, J. G., Luchinat, C. and Rosato, A. (1998). Partial Orientation of Oxidized and Reduced Cytochrome b5 at High Magnetic Fields: Magnetic Susceptibility Anisotropy Contributions and Consequences for Protein Solution Structure Determination. J. Am. Chem. Soc. 120, 12903–12909.Google Scholar
  9. Bertini, I., Molinari, H., and Niccolai, N., eds. (1991). NMR and Biomolecular Structure, VCH Publisher, Weinheim.Google Scholar
  10. Bizzarri A. R. and Cannistraro, S. (1999). Molecular dynamics simulation of plastocyanin potential energy fluctuations: 1/f noise. Physica A 267, 257–270.Google Scholar
  11. Bohr, H. and Bnmak, S., eds. (1996). Protein Folds. A Distance-Based Approach. CRC Press, Boca Raton, Florida.Google Scholar
  12. Borbat, P. P. and Freed, J. H. (1999). Multi-quantum ESR and Distance Measurements. Chem. Phys. Lett. 313, 145–154.Google Scholar
  13. Brooks, C. L. III, Karplus, M., and Pettitt, B. M., eds. (1988). Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. Advances in Chemical Physics, Vol. 71.Google Scholar
  14. Buck, M. and Karplus, M. (1999). Internal and Overall Peptide Group Motions in Proteins: Molecular Dynamics Simulations for Lysozyme Compared with Results from X-ray and NMR Spectroscopy. J. Am. Chem. Soc. 121, 9645–9658.Google Scholar
  15. Burchfield, J., Telehowski, P., Rosenberg, R. C., Eaton, S. S., and Eaton, G. R. (1994). A Neutral Water-Soluble Broadening Agent for Spin Label Studies, J. Magn. Reson. B104, 69–72.Google Scholar
  16. Case, G. D. and Leigh, J. S., Jr., (1976). Intramitochondrial Positions of Cytochrome Haem Groups Determined by Dipolar Interactions with Paramagnetic Cations. Biochem. J. 160, 769–783.PubMedCentralPubMedGoogle Scholar
  17. Chadhuri, P., Oder, K., Wieghardt, K., Gehring, S., Haase, W., Nuber, B., and Weiss, J. (1988). Moderately Strong Intramolecular Magnetic Exchange Interaction between the Copper(II) Ions Separated by 11.25 Å in [L2Cu2(μ-terephthalato)](C1O4)2 (L = 1,4,7-Trimethyl-1,4,7-triazacyclononane). J. Am. Chem. Soc. 110, 3657–3658.Google Scholar
  18. Coffman, R. E. and Buettner, G. R. (1979). A Limit Function for Long-Range Ferromagnetic and Antiferromagnetic Superexchange. J. Phys. Chem. 83, 2387–2392.Google Scholar
  19. Coffman, R. E. and Pezeshk, A. (1986a). Analytical Consideration of Eatons’ Formula for the Interspin Distance between Unpaired Electrons in ESR. J. Magn. Reson. 70, 21–33.Google Scholar
  20. Dalal, D. P., Damoder, R., Eaton, G. R., and Eaton, S. S. (1985a). Estimates of Collision Frequencies and Solvent Effects in Collision Interactions. J. Magn. Reson. 63, 327–332.Google Scholar
  21. Dalal, D. P., Damoder, R., Benner, C., Eaton, G. R., and Eaton, S. S. (1985b). Metal-Nitroxyl Interactions. 44. Collision Interactions Between Transition Metal Complexes and Nitroxyl Radicals in Aqueous Solution. J. Magn. Reson. 63, 125–132.Google Scholar
  22. Damoder, R., More, K. M., Eaton, G. R., and Eaton, S. S. (1983). Metal-Nitroxyl Interactions. 30. Single Crystal EPR Spectra of Two Spin-Labeled Copper Porphyrins. J. Amer. Chem. Soc. 105, 2147–2154.Google Scholar
  23. Diehl, M., Doster, W., Petry, W., and Schober, H. (1997). Water-Coupled Low-Frequency Modes of Myoglobin and Lysozyme Observed by Inelastic Neutron Scattering. Biophys. J. 73, 2726–2732.PubMedCentralPubMedGoogle Scholar
  24. Dikanov, S. A. and Tsvetkov, Yu. D. (1992) Electron Spin Echo Envelope Modulation Spectroscopy, CRC Press, Boca Raton, FL.Google Scholar
  25. Dzuba, S. A., Kodera, Y., Hara, H., and Kawamori, A. (1993). The Use of Selective Hole Burning in EPR Spectra to Study Spectral Diffusion and Dipolar Broadening. J. Magn. Reson. A 102, 257–260.Google Scholar
  26. Dzuba, S. A. and Kawamori, A. (1996). Selective Hole Burning EPR: Spectral Diffusion and Dipolar Broadening. Concepts in Magnetic Resonance 8, 49–61.Google Scholar
  27. Eaton, S. S. and Eaton, G. R. (1978). Interaction of Spin Labels with Transition Metals. Coord. Chem. Rev. 26, 207–262.Google Scholar
  28. Eaton, S. S. and Eaton, G. R. (1982). Measurement of Spin-Spin Distances from the Intensity of the EPR Half-Field Transition. J. Am. Chem. Soc. 104, 5002–5003.Google Scholar
  29. Eaton, S. S. and Eaton, G. R. (1988a). Interaction of Spin Labels with Transition Metals. Part 2. Coord. Chem. Rev. 83, 29–72.Google Scholar
  30. Eaton, G. R. and Eaton, S. S. (1988b). EPR Studies of Long-Range Intramolecular Electron-Electron Exchange Interaction. Acct. Chem. Res. 21, 107–113.Google Scholar
  31. Eaton, G. R. and Eaton, S. S. (1989). Resolved Electron-Electron Spin-Spin Splitting in EPR Spectra. Biol. Magn. Reson. 8, 339–397.Google Scholar
  32. Eaton, G. R. and Eaton, S. S. (1996). Determination of Electron-Electron Interspin Distance by Electron Spin Echo and Saturation Recovery Electron Paramagnetic Resonance. Current Topics in Biophysics 20, 5–8.Google Scholar
  33. Eaton, S. S., Law, M. L., Peterson, J., Eaton, G. R., and Greenslade, D. J. (1979). MetalNitroxyl Interactions. 7. Quantitative Aspects of EPR Spectra Resulting from Dipolar Interactions. J. Magn. Reson. 33, 135–141.Google Scholar
  34. Eaton, S. S., More, K. M., Sawant, B. M., and Eaton, G. R. (1983). Use of the Half-Field Transition to Determine the Interspin Distance and the Orientation of the Interspin Vector in Systems with two Unpaired Electrons. J. Amer. Chem. Soc. 105, 6560–6567.Google Scholar
  35. Eischenbroich, Ch., Schiemann, O., Burghaus, O., and Harms, K. (1997). Exchange Interaction Mediated by O-HO Bonds: Synthesis, Structure, and EPR Study of the Paramagnetic Organometallic Carboxylic Acid (η7-C7H7)V(η5-C5H4COOH). J. Am. Chem. Soc. 119, 7452–7457.Google Scholar
  36. Fielding, L., More, K. M., Eaton, G. R., and Eaton, S. S. (1986). Metal-Nitroxyl Interactions. 51. Collapse of Iron-Nitroxyl Electron-Electron Spin-Spin Splitting Due to the Increase in the Electron Spin Relaxation Rate for High-Spin Iron(III) When Temperature is Increased. J. Am. Chem. Soc. 108, 8194–8196.Google Scholar
  37. Goodson, P. A., Glerup, J., Hodgson, D. J., Michelsen, K., and Rychlewska, U. (1994). Magnetic Exchange through Hydrogen Bonds: Structural and Magnetic Characterization of cis-Hydroxoaquachromium(III) Complexes of Tetradentate and Monodentate Ligands. Inorg. Chem. 33, 359–366.Google Scholar
  38. Goslar, J., Piekara-Sady, L., and Kispert, L. D. (1994). ENDOR Data Tabulations, Ch. VI in Handbook of Electron Spin Resonance, Vol. 1, C. P. Poole, Jr., and H. A. Farach, eds., ALP Press, American Institute of Physics, New York.Google Scholar
  39. Grupp, A., and Mehring, M. (1990). Pulsed ENDOR Spectroscopy in Solids, Ch. 4 in Modern Pulsed and Continuous-Wave Electron Spin Resonance. L. Kevan and M. K. Bowman, eds., Wiley, New York.Google Scholar
  40. Hamachi, I., Yamada, Y., Matsugi, T., Shinkai, S. (1999) Single-or dual-mode switching of semisynthetic ribonuclease S’ with an iminodiacetic acid moiety in response to the copper(II) concentration. Chem. Eur. J. 5, 1503–1511.Google Scholar
  41. Hara, H. and Kawamori, A. (1997). A Selective Hole Burning Method Applied to Determine Distances between Paramagnetic Species in Photosystems. Appl. Magn. Reson. 13, 241–257.Google Scholar
  42. Hdkansson, K., Carlsson, U., Svensson, M., and Liljas, A. (1992). Structure of native and apo carbonic anhydarse II and structure of some of its anion-ligand complexes. J. Mol. Biol. 277, 1192–1204.Google Scholar
  43. He, M. M., Voss, J., Hubbell, W. L., and Kaback, H. R. (1995a). Use of Designed Metal-Binding Sites to Study Helix Proximity in the Lactose Pennease of Escherichia coli. 1. Proximity of Helix VII (Asp237 and Asp240) with Helices X (Lys319) and XI (Lys358). Biochemistry 34, 15661–15666.PubMedGoogle Scholar
  44. He, M. M., Voss, J., Hubbell, W. L., and Kaback, H. R. (1995b). Use of Designed Metal-Binding Sites to Study Helix Proximity in the Lactose Permesse of Escherichia coli. 2. Proximity of Helix IX (Arg302) with Helix X (His322 and G1u325). Biochemistry 34, 15667–15670.PubMedGoogle Scholar
  45. Hellinga, H. W. (1996). Design of Metalloproteins, in Protein Engineering, Principles and Practice, J. L. Cleland and C. S. Craik, eds., Wiley-Liss, pp. 369–398.Google Scholar
  46. Hubbell, W. L., Fross, A., Langren, R., and Lietzow, M. A. (1998). Recent advances in site-directed spin labeling of proteins. Curr. Opinion Struct. Biol. 8, 649–656.Google Scholar
  47. Hustedt, E. J., Smimov, A. I., Laub, C. F., Cobb, C. E., and Beth, A. H. (1997). Molecular Distances from Dipolar Coupled Spin-Labels: The Global Analysis of Multifrequency Continuous Wave Electron Paramagnetic Resonance Data. Biophys. J. 72, 1861–1877.PubMedCentralPubMedGoogle Scholar
  48. Hyde, J. S., Swartz, H. M., and Antholine, W. E. (1979). The Spin-Probe-Spin Label Method. Ch. 2 in Spin Labeling II: Theory and Applications. L. J. Berliner, ed., Academic Press, New York.Google Scholar
  49. Jung, K., Voss, J., He., M., Hubbell, W. L., and Kaback, H. R. (1995). Engineering a Metal Binding Site within a Polytopic Membrane Protein, the Lactose Permesse of Escherichia coli. Biochem. 34, 6272–6277.Google Scholar
  50. Kodera, Y., Dzuba, S. A., Hara, H., Kawamori, A. (1994). Distances from tyrosine D’ to the manganese cluster and the acceptor iron in Photosystem II as determined by selective hole burning in EPR spectra. Biochim. Biophys. Acta 1186, 91–99.Google Scholar
  51. Kokorin, A. I., Zamarayev, K. I., Grigoryan, G. L., Ivanov, V. P., and Rozantsev, E. G. (1972). Measurement of the Distances between the Paramagnetic Centres in Solid Solutions of Nitroxide Radicals, Biradicals, and Spin-Labeled Proteins. Biofizika 17, 34–41 (p. 31–39 in transl.)Google Scholar
  52. Kokorin, A. I., and Formazyuk, V. E. (1981). New Method of Measuring Distances Between Spin Label and Paramagnetic Ions in Macromolecules. Molek Biol. 15, 930–938 (p. 722–728 in transl.)Google Scholar
  53. Koteiche, H. A., Berengian, A. R., and Mchaourab, H. S. (1998). Identification of Protein Folding Patterns Using Site-Directed Spin Labeling. Structural Characterization of a Sheet and Putative Substrate Binding Regions in the Conserved Domain of aA-Crystallin. Biochem. 37, 12681–12688.Google Scholar
  54. Kuo, L. C., Fukuyama, J. M., and Mahnen, M. W. (1983). Catalytic Conformation of Carboxypeptidase A. The Structure of a True Reaction Intermediate Stabilized at Subzero Temperatures. J. Mol. Biol. 163, 63–105.PubMedGoogle Scholar
  55. Kurshev, V. V., Raitsimring, A. M., and Salikhov, K. M. (1988). Angular dependence of the dipole broadening function of the ESR line of single crystals containing paramagnetic centers with an anisotropic g tensor: Era+ in CaWO4. Sov. Phys. Solid State 30, 239–242.Google Scholar
  56. Kurshev, V. M., Raitsimring, A. M., and Tsvetkov, Yu. D. (1989). Selection of Dipolar Interaction by the “2+1” Pulse Train ESE. J. Magn. Reson. 81, 441–454.Google Scholar
  57. Langen, R., Oh, K. J., Cascio, D., and Hubbell, W. L. (2000) Crystal Structure of Spin Labeled T4 Lysozyme Mutants: Implications for the Interpretation of EPR Spectra in Terms of Structure. Biochemistry 39, 8396–8405.PubMedGoogle Scholar
  58. Leigh, J. S., Jr. (1970). ESR Rigid-Limit Line Shape in a System of Two Interacting Spins. J. Chem. Phys. 52, 2608–2612.Google Scholar
  59. Likhtenshtein, G. I. (1976). Spin Labeling Methods in Molecular Biology, Wiley, New York.Google Scholar
  60. Lu, Y. and Valentine, J. S. (1997). Engineering metal-binding sites in proteins. Curr. Opin. Struct. Biol. 7, 495–500.PubMedGoogle Scholar
  61. Luckhurst, G. R. (1976) Biradicals as Spin Probes, Spin Labeling: Theory and Applications, L. J. Berliner, ed., Academic Press, N. Y., ch. 4.Google Scholar
  62. Mahnen, M. W. and Kuo, L. C. (1983) Spin-Label Probes of Enzyme Action, Magn. Reson. Biol. 2, 53–94.Google Scholar
  63. Maret, W. (1993). Detecting Metal-Metal Interactions and Measuring Distances between Metal Centers in Metalloproteins. Methods Enzymol. 226, 594–618.PubMedGoogle Scholar
  64. Martin, R. E., Pannier, M., Diederich, F., Gramlich, V., Hubrich, M., and Spiess, H. W. (1998). Determination of End-to-End Distances in a Series of TEMPO Diradicals of up to 2.8 nm Length with a New Four-Pulse Double Electron Electron Resonance Experiment. Angew. Chem. 37, 2834–2837.Google Scholar
  65. Maryasov, A. G., Tsvetkov, Y. D., and Raap, J. (1998). Weakly Coupled Radical Pairs in Solids: ELDOR in ESE Structure Studies. Appl. Magn. Reson. 14, 101–113.Google Scholar
  66. McCracken, J. (1999) Electron Spin Echo Envelope Modulation, Ch. V in Handbook of Electron Spin Resonance, Vol. 2, C. P. Poole, Jr., and H. A. Farach, eds., AIP Press, Springer-Verlag, New York.Google Scholar
  67. Mchaourab, H. S., Berengian, A. R., and Koteiche, H. A. (1997). Site-Directed Spin-Labeling Study of the Structure and Subunit Interactions along a Conserved Sequence in the aCrystallin Domain of Heat-Shock Protein 27. Evidence of a Conserved Subunit Interface. Biochem. 36, 14627–14634.Google Scholar
  68. Milov, A. D., Salikhov, K. M., and Shchirov, M. D. (1981). Application of the double resonance method to electron spin echo in a study of the spatial distribution of paramagnetic centers in solids. Soy. Phys. Solid State 23, 565–569.Google Scholar
  69. Milov A. D., and Tsvetkov, Yu. D. (1997). Double Electron-Electron Resonance in Electron Spin Echo: Conformations of Spin-Labeled Poly-4-Vinylpyridine in Glassy Solutions. Appl. Magn. Reson. 12, 495–504.Google Scholar
  70. Milov, A. D., Maryasov, A. G., and Tsvetkov, Y. D. (1998). Pulsed Electron Double Resonance (PELDOR) and Its Applications in Free Radicals Research. Appl. Magn. Reson. 15, 107–143.Google Scholar
  71. Milov, A. D., Maryasov, A. G., Tvestkov, Yu. D., and Raap, J. (1999). Pulsed ELDOR in spin-labeled polypeptides. Chem. Phys. Lett. 303, 135–143.Google Scholar
  72. Minis, W. B. and Peisach, J. (1981). Electron spin echo spectroscopy and the study of metalloproteins, Biol. Magn. Reson. 3, 213–263.Google Scholar
  73. More, K. M., Eaton, G. R., and Eaton, S. S. (1982). Metal-Nitroxyl Interactions. 25. Exchange Interactions via Saturated Linkages in Spin Labeled Porphyrins. Can. J. Chem. 25, 1392–1401.Google Scholar
  74. More, J. K., More, K. M., Eaton, G. R., and Eaton, S. S. (1984). Metal-Nitroxyl Interactions. 39. Electron-Electron Spin-Spin Splitting in the EPR Spectra of Nitroxyl Spin-Labeled Mn(II) Complexes in Fluid Solution. J. Amer. Chem. Soc. 106, 5395–5402.Google Scholar
  75. More, K. M., Eaton, G. R., and Eaton, S. S. (1985). Metal-Nitroxyl Interactions. 42. Spin-Spin Interaction in Frozen Solution EPR Spectra of Spin-Labeled Mn(II) Complexes. J. Magn. Reson. 63, 151–167.Google Scholar
  76. Morris, A. T. and Dwek, R. A. (1977). Some Recent Applications of the Use of Paramagnetic Centers to Probe Biological Systems Using Nuclear Magnetic Resonance. Quart. Rev. Biophys. 10, 421–484.Google Scholar
  77. Niimura, N. (1999). Neutrons expand the field of structural biology. Curr. Opin. Struct. Biol. 9, 602–608.PubMedGoogle Scholar
  78. Pake, G. E. and Estle, T. L. (1973). The Physical Principles of Electron Paramagnetic Resonance, 2nd Ed., W. A. Benjamin, Inc., Reading, Mass. See pages 157ff.Google Scholar
  79. Pannier, M., Veit, S., Godt, A., Jeschke, G., and Spiess, H. W. (2000). Dead-time Free Measurement of Dipole-Dipole Interactions between Electron Spins, J. Magn. Reson. 142, 331–340.PubMedGoogle Scholar
  80. Persson, M., Harbridge, J. R., Hammarström, P., Mitri, R., Mdrtensson, L.-G., Carlsson, U., Eaton, G. R., and Eaton, S. S. (2000). Comparison of EPR Methods to Determine Distances between Spin Labels on Human Carbonic Anhydrase II, submitted for publication.Google Scholar
  81. Piekara-Sady, L., and Kispert, L. D. (1994). ENDOR Spectroscopy, Ch. V in Handbook of Electron Spin Resonance, Vol. 1, C. P. Poole, Jr., and H. A. Farach, eds., AIP Press, American Institute of Physics, New York.Google Scholar
  82. Postnikova, G. B. (1996). Spin-Label Studies of the Conformational Properties of Herne Proteins: a Review. Biochemistry (Moscow) 61, 679–693.Google Scholar
  83. Prestegard, J., Tolman, J. R., Al-Hashimi, H. M., and Andrec, M. (1999). Protein Structure and Dynamics from Field-Induced Residual Dipolar Coupings. Biol. Magn. Reson. 17, in press.Google Scholar
  84. Rabenstein, M. D. and Shin, Y.-K. (1995). Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. U.S. 92, 8239–8243.Google Scholar
  85. Raitsimring, A., Peisach, J., Lee, H. C., and Chen, X. (1992). Measurement of Distance Distributions between Spin Labels in Spin-Labeled Hemoglobin Using an Electron Spin Echo Method. J. Phys. Chem. 96, 3526–3531.Google Scholar
  86. Rakowsky, M. H., More, K. M., Kulikov, A. V., Eaton, G. R., and Eaton, S. S. (1995). Time-Domain Electron Paramagnetic Resonance as a Probe of Electron-Electron Spin-Spin Interaction in Spin-Labeled Iron Porphyrins. J. Amer. Chem. Soc. 117, 2049–2057.Google Scholar
  87. Read, R. J. and Wemmer, D. E. (1999). Biophysical Methods–Bigger, better, faster, and automatically too? Editorial overview. Curr. Opin. Struct. Biol. 9, 591–593.Google Scholar
  88. Reed, C. A. and Orosz, R. D. (1993). Spin Coupling Concepts in Bioinorganic Chemistry. in Research Frontiers in Magnetochemistry. C. J. O’Connor, ed., World Scientific, Singapore.Google Scholar
  89. Regan, L. (1993). The design of metal-binding sites in proteins. Ann. Rev. Biophys. Biomol. Struct. 22, 257–281.Google Scholar
  90. Salikhov, K. M., Kandrashkin, Yu. E., and Salikhov, A. K. (1992). Peculiarities of free induction and primary spin echo signals for spin-correlated radical pairs, Appl. Magn. Reson. 3, 199–217.Google Scholar
  91. Saxena, S. and Freed, J. H. (1996). Double quantum two-dimensional Fourier transform electron spin resonance: distance measurements. Chem. Phys. Lett. 251, 102–110.Google Scholar
  92. Saxena, S. and Freed, J. H. (1997). Theory of double quantum two-dimensional electron spin resonance with application to distance measurements. J. Chem. Phys. 107, 1317–1340.Google Scholar
  93. Schlichter, J., Friedrich, J., Herenyi, L., and Fidy, J. (2000). Protein dynamics at low temperatures. J. Chem. Phys. 112, 3045–3050.Google Scholar
  94. Shigemori, K., Hara, H., Kawamori, A., and Akabori, K. (1998). Determination of distances from tyrosine to D and QA and chlorophyllz in photosystem II studied by ‘2+1’ pulsed EPR. Biochim. Biophys. Acta 1363, 187–198.PubMedGoogle Scholar
  95. Sigel, H. and Sigel, A. (1994). Metal Ions in Biological Systems, Vol. 30, Metalloenzymes Involving Amino Acid-Residue and Related Radicals. Marcel Dekker, New York.Google Scholar
  96. Sigel, H. and Sigel, A. (1999). Metal Ions in Biological Systems, Vol. 36, Interelations Between Free Radicals and Metal Ions in Life Processes. Marcel Dekker, New York.Google Scholar
  97. Steinhoff, H.-J., Radzwill, N., Thevis, W., Lenz, V., Brandenburg, D., Antson, A., Dodson, G., and Wolimer, A. (1997) Determination of Interspin Distances between Spin Labels Attached to Insulin: Comparison of Electron Paramagnetic Resonance Data with the X-Ray Structure. Biophys. J. 73, 3287–3298.PubMedCentralPubMedGoogle Scholar
  98. Stowell, M. H. B., Miyazawa, A., and Unwin, N. (1998). Macromolecular structure determination by electron microscopy: new advances and recent results. Curr. Opin. Struct. Biol. 8, 595–600.PubMedGoogle Scholar
  99. Sun, J., Voss, J., Hubbell, W. L., and Kaback, H. R. (1999). Proximity between Periplasmic Loops in the Lactose Permease of Escherichia coli as Determined by Site Directed Spin Labeling. Biochem. 38, 3100–3105.Google Scholar
  100. Tang, J., Thurnauer, M. C., and Norris, J. R. (1994). Electron spin echo envelope modulation due to exchange and dipolar interactions in a spin-correlated radical pair. Chem. Phys. Lett. 219, 283–290.Google Scholar
  101. Tarek, M. and Tobias, D. J. (1999). Environmental Dependence of the Dynamics of Protein Hydration Water. J. Am. Chem. Soc. 121, 9740–9741.Google Scholar
  102. Thomson, C. (1968). Electron Spin Resonance Studies of the Triplet State. Q. Rev. Phys. Soc. 22, 45–74.Google Scholar
  103. Voss, J., Salwinski, L., Kaback, H. R., and Hubbell, W. L. (1995a). A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: Evaluation with T4 lysozyme. Proc. Natl. Acad. Sci. USA 92, 12295–12299.PubMedCentralPubMedGoogle Scholar
  104. Voss, J., Hubbell, W. L., and Kaback, H. R. (1995b). Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling: Application to the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 12300–12303.PubMedCentralPubMedGoogle Scholar
  105. Voss, J., Hubbell, W. L., and Kaback, H. R. (1998). Helix Packing in the Lactose Permease Determined by Metal-Nitroxide Interaction. Biochem. 37, 211–216.Google Scholar
  106. Weil, J. A., Bolton, J. R., and Wertz, J. E. (1994). Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. John Wiley & Sons, Inc., New York.Google Scholar
  107. Wider, G. and Wüthrich, K. (1999). NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr. Opin. Struct. Biol. 9, 594–601.PubMedGoogle Scholar
  108. Yager, T. D., Eaton, G. R., and Eaton, S. S. (1978). (Cr(oxalate)3)3- as a Broadening Agent in Nitroxyl Spin Probe Studies. J. C. S. Chem. Commun., 944–945.Google Scholar
  109. Yoshioka, N., Irisawa, M., Mochizuki, Y., Kato, T., Inoue, H., and Ohba, S. (1997). Unusually Large Magnetic Interactions Observed in Hydrogen-Bonded Nitronyl Nitroxides. Chem. Lett. 251–252.Google Scholar
  110. Zwahlen, C., Gardner, K. H., Sarma, S. P., Horita, D. A., Byrd, R. A., and Kay, L. E. (1998). An NMR Experiment for Measuring Methyl-Methyl NOEs in 13C-Labeled Proteins with High Resolution. J. Am. Chem. Soc. 120, 7617–7625.Google Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • Sandra S. Eaton
    • 1
  • Gareth R. Eaton
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of DenverDenverUSA

Personalised recommendations