Skip to main content

The physics of Czochralski crystal growth

  • Chapter
  • First Online:
Festkörperprobleme 27

Part of the book series: Advances in Solid State Physics ((ASSP,volume 27))

Abstract

Czochralski's crystal growth method is applied especially for the growth of nearly perfect single crystals. The resulting crystal shape is determined by the melt meniscus. Its actual shape allows the derivation of signals for controlling the growth process. Crystal perfection and shape of the growing crystal is determined by the heat flow in the crystal and by the matter and heat flow in the melt. The generation of the defects during crystal growth and possible improvements of the crystal perfection either by the application of growth in a magnetic field or in micro-gravity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Wassermann and P. Wincierz, in: Das Metall-Laboratorium der Metallgesellschaft AG 1918–1981. Chronik und Bibliographie (Frankfurt/Main), p.9–20

    Google Scholar 

  2. J. Czochralski, Z. Physik Chem. 92, 219 (1918)

    Google Scholar 

  3. J.C. Brice, The Growth of Crystals from the Liquids in: Selected Topics in Solid State Physics, Vol. XII, ed. by E.P. Wolfarth (North Holland, Amsterdam 1973), pp. 245

    Google Scholar 

  4. W.C. Dash, J. Appl. Phys. 30, 459 (1959)

    Article  ADS  Google Scholar 

  5. H. Wenzl, A. Fattah, and W. Uelhoff, J. Crystal Growth 36, 319 (1976)

    Article  ADS  Google Scholar 

  6. D. Geist and P. Grosse, Z. Angew. Phys. 14, 105 (1962)

    Google Scholar 

  7. W. Uelhoff and K. Gärtner, Rost. Kristallow. 12, 238 (1972)

    Google Scholar 

  8. K. Mika and W. Uelhoff, J. Crystal Growth 30, 9 (1975)

    Article  ADS  Google Scholar 

  9. A. v.d. Hart and W. Uelhoff, J. Crystal Growth 51, 251 (1981)

    Article  ADS  Google Scholar 

  10. E. Quintero Diplomarbeit, Aachen 1986

    Google Scholar 

  11. W. Uelhoff, in: Dreiländer-Jahrestagung über Kristallwachstum und Kristallzüchtung, Report JÜL-Conf-18 (Jülich 1976)

    Google Scholar 

  12. O. Knacke and I.N. Stranski, Ergebn. exakt. Naturw. Bd. XXVI, 383 (1952)

    Google Scholar 

  13. M. Mihelcic, C. Schroeck-Pauli, K. Wingerath, H. Wenzl, W. Uelhoff, and A v. d. Hart, J. Crystal Growth 57, 300 (1982)

    Article  ADS  Google Scholar 

  14. J.A.M. Dikhoff, Philips Techn. Rundschau 25, 441 (1963, 64)

    Google Scholar 

  15. E. Bauser, in Festkörperprobleme/Advances in Solid State Physics, Vol. XXII, ed. by P. Grosse (Vieweg, Braunschweig 1983), p. 141

    Google Scholar 

  16. R. Singh, A.F. Witt, and H.C. Gatos, J. Electrochem. Soc. 115 112 (1968)

    Article  Google Scholar 

  17. M. Lichtensteiger, A.F. Witt, and H.C. Gatos, J. Electrochem. Soc. 118, 1013 (1971)

    Article  Google Scholar 

  18. W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444 (1964)

    Article  ADS  Google Scholar 

  19. J. Vidal and R. Romero, Crystal Research and Technology 16, 853 (1981)

    Google Scholar 

  20. Y. K. Chang A. Fattak and W. Uelhoff, submitted to J. Crystal Growth

    Google Scholar 

  21. A. Eyer, H. Leiste, and R. Nitsche, J. Crystal Growth 71, 173 (1985)

    Article  ADS  Google Scholar 

  22. H. C. Gatos, A. F. Witt, M. Lichtensteiger, and C. J. Herman, in: Apollo-Soyuz Test Project, Summary Science Report, Vol. I, NASA SP-412, p. 429 (1977)

    Google Scholar 

  23. H. C. Gatos, in: Materials Processing in the reduced gravity environment in Space, ed. by G. E. Rindone (Elsevier Science, 1982), p. 355

    Google Scholar 

  24. S. R. Coriell and R. F. Sekerka, J. Crystal Growth 46, 479 (1979)

    Article  ADS  Google Scholar 

  25. R. E. Reed, W. Uelhoff, and H. L. Adair, in: Apollo-Soyuz Test Project, Summary Science Report, Vol. I, NASA SP-412, p. 367 (1977)

    Google Scholar 

  26. T. Carlberg, J. Crystal Growth 79, 71 (1976)

    Article  ADS  Google Scholar 

  27. H. Hamacher, R. Jilg, and U. Merbold, in: 6th European Symposium “Materials Sciences under Microgravity Conditions” (Bordeaux 1986), p. 1

    Google Scholar 

  28. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford 1961)

    MATH  Google Scholar 

  29. D.T.J. Hurle, Phil, Mag. 13, 305 (1966)

    Article  ADS  Google Scholar 

  30. K. Terashimi and T. Fukuda, J. Crystal Growth 63, 423 (1983)

    Article  ADS  Google Scholar 

  31. D.T.J. Hurle and R.W. Series, J. Crystal Growth 73, 1 (1985)

    Article  ADS  Google Scholar 

  32. T. Kimura, T. Katsumata, and T. Fukuda, J. Crystal Growth 79, 264 (1986)

    Article  ADS  Google Scholar 

  33. H. Gottschalk, G. Patzer, and H. Alexander, phys. stat. sol. (a) 45, 207 (1987)

    Article  ADS  Google Scholar 

  34. W. Zulehner, J. Crystal Growth 65, 189 (1983)

    Article  ADS  Google Scholar 

  35. J. Friedel, Dislocations (Pergamon Press, Oxford 1964)

    MATH  Google Scholar 

  36. W.A. Tiller, J. Appl. Phys. 29, 611 (1958)

    Article  ADS  Google Scholar 

  37. A.S. Jordan, A.R. von Neida, and R. Caruso, J. Crystal Growth 76, 243 (1981)

    Google Scholar 

  38. P. Haasen, private communication

    Google Scholar 

  39. E. Kappler, W. Uelhoff, H. Fehmer, and F. Abbink, in: Herstellung von Kupfereinkristallen kleiner Versetzungsdichte, Opladen 1971

    Google Scholar 

  40. H. Siethoff, J. Völkl, D. Gerthsen, and H. G. Brion, submitted to Appl. Phys. Lett.

    Google Scholar 

  41. W.A. Bonner, J. Crystal Growth 54, 21 (1981)

    Article  ADS  Google Scholar 

  42. H. Fehmer and W. Uelhoff, J. Crystal Growth 13/14, 257 (1972)

    Article  ADS  Google Scholar 

  43. E. Schönherr, in: International Conference of Crystal Growth, North Holland, Boston 1966

    Google Scholar 

  44. T. Kobayashi, J. Osaka, and K. Hoshikawa, J. Crystal Growth 71, 813 (1985)

    Article  ADS  Google Scholar 

  45. D. Fehmer, Diplomarbeit, Münster 1968

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Uelhoff, W. (1987). The physics of Czochralski crystal growth. In: Grosse, P. (eds) Festkörperprobleme 27. Advances in Solid State Physics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107924

Download citation

  • DOI: https://doi.org/10.1007/BFb0107924

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08033-4

  • Online ISBN: 978-3-540-75356-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics