Skip to main content

Computational synthetic geometry with Clifford algebra

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1360))

Abstract

Computational synthetic geometry is an approach to solving geometric problems on a computer, in which the quantities appearing in the equations are all covariant under the corresponding group of transformations, and hence possess intrinsic geometric meanings. The natural covariant algebra of metric vector spaces is called Clifford algebra, and it includes Gibbs' vector algebra as a special case. As a preliminary essay demonstrating that one can develop practical computer programs based on this approach for solving problems in Euclidean geometry, we have implemented a MAPLE package, called Gibbs, for the elementary expansion and simplification of expressions in Gibbs' abstract vector algebra. We also show how to translate any origin-independent scalar-valued expression in the algebra into an element of the corresponding invariant ring, which we have christened the Cayley-Menger ring. Finally, we illustrate the overall approach by using it to derive a new kinematic parametrization of the conformation space of the molecule cyclohexane.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ablamowicz, P. Lounesto, and J. M. Parra, editors. Clifford Algebras with Numeric and Symbolic Computations. Birkhäuser, Boston, MA, 1996.

    Google Scholar 

  2. E. Schrufer, F. W. Hehl, and J. D. McCrea. Exterior calculus on the computer: The REDUCE-package EXCALC applied to general relativity and to the Poincare gauge theory. General Relativity and Gravitation, 19:197–218, 1987.

    Article  Google Scholar 

  3. B. W. Char, G. J. Fee, K. O. Geddes, G. H. Gonnet, and M. B. Monagan.A tutorial introduction to maple. J. Symb. Comput., 2:179–200, 1986.

    Google Scholar 

  4. T. F. Havel and I. Najfeld. Applications of geometric algebra to the theory of molecular conformation. Part 2. The local deformation problem. J. Mol. Struct. (TheoChem), 336:175–189, 1995.

    Article  Google Scholar 

  5. T. F. Havel and I. Najfeld. A new system of equations, based on geometric algebra, for ring closure in cyclic molecules. In Applications of Computer Algebra in Science and Engineering, pages 243–259. World Scientific, Singapore, 1995.

    Google Scholar 

  6. J. Bokowski and B. Sturmfels. Computational Synthetic Geometry. Lect. Notes Math. 1355. Springer-Verlag, Berlin, F.R.G., 1989.

    Google Scholar 

  7. B. Sturmfels. Algorithms in Invariant Theory. Springer-Verlag, New York, NY, 1993.

    Google Scholar 

  8. M. Barnabei, A. Brini, and G.-C. Rota. On the exterior calculus of invariant theory. J. Algebra, 96:120–160, 1985.

    Google Scholar 

  9. N. L. White. A tutorial on Grassmann-Cayley algebra. In N. L. White, editor, Invariant Methods in Discrete and Computational Geometry, pages 93–106. Kluwer Academic, Amsterdam, Holland, 1995.

    Google Scholar 

  10. H. Weyl. The Classical Groups. Princeton University Press, Princeton, NJ, 1939.

    Google Scholar 

  11. D. R. Richman. The fundamental theorems of vector invariants. Adv. Math., 73:43–78, 1989.

    Article  Google Scholar 

  12. A. W. M. Dress and T. F. Havel. Some combinatorial properties of discriminants in metric vector spaces. Adv. Math., 62:285–312, 1986.

    Article  Google Scholar 

  13. D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. D. Reidel Pub. Co., Dordrecht, Holland, 1984.

    Google Scholar 

  14. D. Hestenes and R. Ziegler. Projective geometry with Clifford algebra. Acta Appl. Math., 23:25–63, 1991.

    Article  Google Scholar 

  15. D. Hestenes. The design of linear algebra and geometry. Acta Appl. Math., 23:65–93, 1991.

    Article  Google Scholar 

  16. A. W. M. Dress and T. F. Havel.Distance geometry and geometric algebra. Found. Phys., 23:1357–1374, 1993.

    Article  Google Scholar 

  17. T. F. Havel. Geometric algebra and Möbius sphere geometry as a basis for euclidean invariant theory. In Invariant Methods in Discrete and Computational Geometry, pages 245–256. Kluwer Academic, Amsterdam, Holland, 1995.

    Google Scholar 

  18. J. P. Dalbec. Straightening Euclidean invariants. Ann. Math. Artif. Intel., 13:97–108, 1995.

    Article  Google Scholar 

  19. J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity, volume 2 of Graduate Studies in Mathematics. Amer. Math. Soc., Providence, RI, 1993.

    Google Scholar 

  20. G. M. Crippen and T. F. Havel. Distance Geometry and Molecular Conformation. Research Studies Press, Taunton, England, 1988.

    Google Scholar 

  21. A. W. M. Dress. Vorlesungen dber kombinatorische Geometrie. Univ. Bielefeld, Germany, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dongming Wang

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Havel, T.F. (1998). Computational synthetic geometry with Clifford algebra. In: Wang, D. (eds) Automated Deduction in Geometry. ADG 1996. Lecture Notes in Computer Science, vol 1360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022722

Download citation

  • DOI: https://doi.org/10.1007/BFb0022722

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64297-8

  • Online ISBN: 978-3-540-69717-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics