Skip to main content

Ductile Mode Cutting of Calcium Fluoride

  • Chapter
  • First Online:
Book cover Ductile Mode Cutting of Brittle Materials

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

Calcium fluoride is one of the favourite optical materials in the advanced optics applications  owing to its superior optical transmission and mechanical properties. While micromachining techniques have evolved to enhance the production process for optical components, this chapter will focus on the fundamental aspects to achieve ductile mode machining by single point diamond turning and the essential surface characterisation techniques are also covered. The anisotropic characteristics will be examined along with the numerical simulation tools to evaluate the ductile–brittle transition. Methods to enhance the machinability integrated with single point diamond turning are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Senguttuvan N, Aoshima M, Sumiya K, Ishibashi H (2005) Oriented growth of large size calcium fluoride single crystals for optical lithography. J Cryst Growth 280:462–466

    Google Scholar 

  2. Muehlig C, Triebel W, Toepfer G, Jordanov A (2003) Calcium fluoride for ArF laser lithography: characterization by in-situ transmission and LIF measurements. In: Laser-induced damage in optical materials: 2002 and 7th international workshop on laser beam and optics characterization, pp 458–466

    Google Scholar 

  3. Stenzel E, Gogoll S, Sils J, Huisinga M, Johansen H, Kästner G, Reichling M, Matthias E (1997) Laser damage of alkaline-earth fluorides at 248 nm and the influence of polishing grades. Appl Surf Sci 109(110):162–167

    Google Scholar 

  4. Dressler L, Rauch R, Reimann R (1992) On the inhomogeneity of refractive index of CaF crystals for high performance optics. Cryst Res Technol 27:413–420

    Google Scholar 

  5. Malitson IH (1963) A redetermination of some optical properties of calcium fluoride. Appl Opt 2:1103

    Google Scholar 

  6. Burnett JH, Kaplan SG, Shirley EL, Clauss W, Burnett JH, Kaplan SG, Shirley EL, Horowitz D, Grenville A, Van Peski C (2006) High-index optical materials for 193 nm immersion lithography. In: Proceedings of SPIE, vol 6154. Optical microlithography XIX

    Google Scholar 

  7. Maushake P (2008) Calcium fluoride crystals blanks offer highest transmission rates at 193 nm and below. Opt Photonik 2:46–47

    Google Scholar 

  8. Ballard SS, Combes LS, Mccarthy KA (1952) A comparison of the physical properties of barium fluoride and calcium fluoride. J Opt Soc Am 42:684_1

    Google Scholar 

  9. Burnett JH, Levine ZH, Shirley EL (2001) Intrinsic birefringence in calcium fluoride and barium fluoride. Phys Rev B Condens Matter Mater Phys 64:1–4

    Google Scholar 

  10. Hata K, Watanabe M, Watanabe S (1990) Nonlinear processes in UV optical materials at 248 nm. Appl Phys B 50:55–59

    Google Scholar 

  11. Zhang Q (2008) Nano-indentation of cubic and tetragonal single crystals. University of Rochester

    Google Scholar 

  12. Jones LEA (1977) High-temperature elasticity of the fluorite-structure compounds CaF2, SrF2 and BaF2. Phys Earth Planet Inter 15:77–89

    Google Scholar 

  13. O’Neill JB, Redfern BAW, Brookes CA (1973) Anisotropy in the hardness and friction of calcium fluoride crystals. J Mater Sci 8:47–58

    Google Scholar 

  14. Yan J, Syoji K, Kuriyagawa T (2000) Diamond turning of CaF2 for nanometric surface. American Society for Precision Engineering proceedings, pp 66–69

    Google Scholar 

  15. Speziale S, Duffy TS (2002) Single-crystal elastic constants of fluorite (CaF2) to 9.3 GPa. Phys Chem Miner 29:465–472

    Google Scholar 

  16. Phillips WL (1961) Deformation and fracture processes in calcium fluorade single crystals. J Am Ceram Soc 44:499–506

    Google Scholar 

  17. Retherford RS, Sabia R, Sokira VP (2001) Effect of surface quality on transmission performance for (111) CaF2. Appl Surf Sci 183:264–269

    Google Scholar 

  18. Hahn D (2014) Calcium fluoride and barium fluoride crystals in optics: multispectral optical materials for a wide spectrum of applications. Opt Photonik 9:45–48

    Google Scholar 

  19. Gupta R, Burnett JH, Griesmann U, Walhout M (1998) Absolute refractive indices and thermal coefficients of fused silica and calcium fluoride near 193 nm. Appl Opt 37:5964

    Google Scholar 

  20. Horowitz A, Biderman S, Amar GB, Laor U, Weiss M, Stern A (1987) The growth of single crystals of optical materials via the gradient solidification method. J Cryst Growth 85:215–222

    Google Scholar 

  21. Manutchehr-Danai M (2009) Bridgman–Stockbarger technique. In: Dictionary of gems and gemology. Springer, Berlin, p 111

    Google Scholar 

  22. Nachimuthu S, Aoshima M, Shimizu S, Sumiya K, Ishibashi H (2007) Improvement in optical properties of CaF2 single crystals used for nanolithography. In: Hitachi Technical Report, vol 48, pp 7–12

    Google Scholar 

  23. Yan J, Syoji K, Tamaki J (2004) Crystallographic effects in micro/nanomachining of single-crystal calcium fluoride. J Vac Sci Technol B Microelectron Nanom Struct 22:46

    Google Scholar 

  24. Rothschild M, Bloomstein TM, Fedynyshyn TH, Kunz RR, Liberman V, Switkes M, Efremow NN, Palmacci ST, Sedlacek JHC, Hardy DE, Grenville A (2003) Optical lithography. Lincoln Lab J 14:221–236

    Google Scholar 

  25. Darcangelo CM, Sabia R, Stevens HJ, Williamson PJ (2002) Angstrom polishing of calcium fluoride optical VUV microlithography lens elements and preforms. United States Patent

    Google Scholar 

  26. Golini D, Jacobs SD, Kordonski WI, Dumas P (1997) Precision optics fabrication using magnetorheological finishing. Adv Mater Opt Precis Struct 67:251–274

    Google Scholar 

  27. Shorey AB, Gregg LL, Romanofsky HJ, Arrasmith SR, Kozhinova I, Hubregsen J, Jacobs SD (1999) Study of material removal during magnetorheological finishing (MRF). Opt Manuf Test Iii 3782:101–111

    Google Scholar 

  28. Tricard M, Dumas PR, Golini D (2004) New industrial applications of magnetorheological finishing (MRF). In: Frontiers in Optics 2004, Optical Society of America—Technical Digest

    Google Scholar 

  29. Gogoll S, Stenzel E, Reichling M, Johansen H, Matthias E (1996) Laser damage of CaF2 (111) surfaces at 248nm. Appl Surf Sci 96–98:332–340

    Google Scholar 

  30. Namba Y, Ohnishi N, Yoshida S, Harada K, Yoshida K, Matsuo T (2004) Ultra-precision float polishing of calcium fluoride single crystals for deep ultra violet applications. CIRP Ann Manuf Technol 53:459–462

    Google Scholar 

  31. Marsh ER, John BP, Couey JA, Wang J, Grejda RD, Vallance RR, Marsh ER, John BP, Couey JA, Wang J, Grejda RD, Vallance RR (2005) Predicting surface figure in diamond turned calcium fluoride using in-process force measurement Predicting surface figure in diamond turned calcium fluoride using in-process force measurement. J Vac Sci Technol B Microelectron Nanom Struct Process Meas Phenom 23:84–89

    Google Scholar 

  32. Grudinin I, Savchenkov A, Matsko A, Strekalov D, Ilchenko V, Maleki L (2006) Ultra high Q crystalline microcavities. Opt Commun 265:33–38

    Google Scholar 

  33. Gläbe R, Riemer O (2010) Diamond machining of micro-optical components and structures. In: Proceedings of SPIE, vol 7716. Micro-optics

    Google Scholar 

  34. Puttick KE, Rudman MR, Smith KJ, Franks A, Lindsey K (1989) Single-point diamond machining of glasses. Proc R Soc A Math Phys Eng Sci 426:19–30

    Google Scholar 

  35. Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73:949–957

    Google Scholar 

  36. Blackley WS, Scattergood RO (1991) Ductile-regime machining model for diamond turning of brittle materials. Precis Eng 13:95–103

    Google Scholar 

  37. Nakasuji T, Kodera S, Hara S, Ikawa N (1990) Diamond turning of brittle materials for optical components. CIRP Ann 39:89–92

    Google Scholar 

  38. Wang H, Riemer O, Rickens K, Brinksmeier E (2016) On the mechanism of asymmetric ductile-brittle transition in microcutting of (111) CaF2 single crystals. Scr Mater 114:21–26

    Google Scholar 

  39. Wang H, Senthil Kumar A, Riemer O (2018) On the theoretical foundation for the microcutting of calcium fluoride single crystals at elevated temperatures. Proc Inst Mech Eng Part B J Eng Manuf 232:1123–1129

    Google Scholar 

  40. Mizumoto Y, Kakinuma Y (2018) Revisit of the anisotropic deformation behavior of single-crystal CaF2 in orthogonal cutting. Precis Eng 53:9–16

    Google Scholar 

  41. Fang T, Lambropoulos JC (2002) Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP). J Am Ceram Soc 85:174–178

    Google Scholar 

  42. Chen X, Xu J, Fang H, Tian R (2017) Influence of cutting parameters on the ductile-brittle transition of single-crystal calcium fluoride during ultra-precision cutting. Int J Adv Manuf Technol 89:219–225

    Google Scholar 

  43. Azami S, Kudo H, Mizumoto Y, Tanabe T, Yan J, Kakinuma Y (2015) Experimental study of crystal anisotropy based on ultra-precision cylindrical turning of single-crystal calcium fluoride. Precis Eng 40:172–181

    Google Scholar 

  44. Azami S, Hiroshi K, Tanabe T, Yan J, Kakinuma Y (2014) Experimental analysis of the surface integrity of single-crystal calcium fluoride caused by ultra-precision turning. Proc CIRP 13:225–229

    Google Scholar 

  45. Mizumoto Y, Aoyama T, Kakinuma Y (2011) Basic study on ultraprecision machining of single-crystal calcium fluoride. Proc Eng 19:264–269

    Google Scholar 

  46. Suzuki N, Nakamura A, Shamoto E, Harada K, Matsuo M, Osada M (2004) Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting. In: Micro-nanomechatronics and human science, 2004 and the fourth symposium micro-nanomechatronics for information-based society, pp 113–138

    Google Scholar 

  47. Dahlman P, Gunnberg F, Jacobson M (2004) The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Technol 147:181–184

    Google Scholar 

  48. Yan J, Tamaki J, Syoji K, Kuriyagawa T (2004) Single-point diamond turning of CaF2 for nanometric surface. Int J Adv Manuf Technol 24:640–646

    Google Scholar 

  49. Patten J, Gao W, Yasuto K (2005) Ductile regime nanomachining of single-crystal silicon carbide. Trans ASME 127:522–532

    Google Scholar 

  50. Chan CY, Lee WB, Wang H (2013) Enhancement of surface finish using water-miscible nano-cutting fluid in ultra-precision turning. Int J Mach Tools Manuf 73:62–70

    Google Scholar 

  51. Luo XC, Sun JN, Chang WL, Ritchie JM (2012) Single point diamond turning of calcium fluoride optics. Key Eng Mater 516:408–413

    Google Scholar 

  52. Lee YJ, Chong JY, Chaudhari A, Wang H (2019) Enhancing ductile-mode cutting of calcium fluoride single crystals with solidified coating. Int J Precis Eng Manuf Technol (in press)

    Google Scholar 

  53. Wang H, Riemer O, Brinksmeier E (2015) Study on the critical chip thickness in microcutting CaF2 single crystals with crystal plasticity finite element method. In: 15th International conference of the European society for precision engineering and nanotechnology (euspen)

    Google Scholar 

  54. Lee WB, Wang H, Chan CY, To S (2013) Finite element modelling of shear angle and cutting force variation induced by material anisotropy in ultra-precision diamond turning. Int J Mach Tools Manuf 75:82–86

    Google Scholar 

  55. Zhang Q, Lambropoulos JC (2007) A model of CaF2 indentation. J Appl Phys 101:043105

    Google Scholar 

  56. Komanduri R, Raff LM (2001) A review on the molecular dynamics simulation of machining at the atomic scale. Proc Inst Mech Eng Part B J Eng Manuf 215:1639–1672

    Google Scholar 

  57. Brass A (1989) Molecular dynamics study of the defect behaviour in fluorite structure crystals close to the superionic transition. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 59:843–859

    Google Scholar 

  58. Yoshino M, Ogawa Y, Aravindan S (2005) Machining of hard-brittle materials by a single point tool under external hydrostatic pressure. J Mater Sci Eng 127:837–845

    Google Scholar 

  59. Lodes MA, Hartmaier A, Göken M, Durst K (2011) Influence of dislocation density on the pop-in behavior and indentation size effect in CaF2 single crystals: Experiments and molecular dynamics simulations. Acta Mater 59:4264–4273

    Google Scholar 

  60. Catlow CRA, Hayns MR (1972) A computational study of the F-F interionic potential. J Phys C Solid State Phys 5:L237–L240

    Google Scholar 

  61. Zhang J, Cui T, Ge C, Sui Y, Yang H (2016) Review of micro/nano machining by utilizing elliptical vibration cutting. Int J Mach Tools Manuf 106:109–126

    Google Scholar 

  62. Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann Manuf Technol 43:35–38

    Google Scholar 

  63. Li ZJ, Fang FZ, Gong H, Zhang XD (2013) Review of diamond-cutting ferrous metals. Int J Adv Manuf Technol 68:1717–1731

    Google Scholar 

  64. Dearnaley G (1975) Ion implantation. Nature 256:701–705

    Google Scholar 

  65. Bourgoin JC, Massarani B (1976) Threshold energy for atomic displacement in diamond. Phys Rev B 14:3690–3694

    Google Scholar 

  66. Kinchin GH, Pease RS (1955) The displacement of atoms in solids by radiation. Rep Prog Phys 18:1–51

    Google Scholar 

  67. Hunsperger RG, Wolf ED, Shifrin GA, Marsh OJ, Jamba DM (1971) Measurement of lattice damage caused by ion-implantation doping of semiconductors. Radiat Eff 9:133–138

    Google Scholar 

  68. To S, Wang H, Jelenković EV (2013) Enhancement of the machinability of silicon by hydrogen ion implantation for ultra-precision micro-cutting. Int J Mach Tools Manuf 74:50–55

    Google Scholar 

  69. Mizumoto Y, Amano H, Kangawa H, Harano K, Sumiya H, Kakinuma Y (2018) On the improvement of subsurface quality of CaF2 single crystal machined by boron-doped nano-polycrystalline diamond tools. Precis Eng 52:73–83

    Google Scholar 

  70. Sumiya H, Ikeda K, Arimoto K, Harano K (2016) High wear-resistance characteristic of boron-doped nano-polycrystalline diamond on optical glass. Diam Relat Mater 70:7–11

    Google Scholar 

  71. Hartley NEW (1982) Mechanical property improvements on ion implanted diamond. In: Metastable mater form by ion implant, pp 295–301

    Google Scholar 

  72. Kawasegi N, Niwata T, Morita N, Nishimura K, Sasaoka H (2014) Improving machining performance of single-crystal diamond tools irradiated by a focused ion beam. Precis Eng 38:174–182

    Google Scholar 

  73. Kawasegi N, Ozaki K, Morita N, Nishimura K, Sasaoka H (2014) Single-crystal diamond tools formed using a focused ion beam: Tool life enhancement via heat treatment. Diam Relat Mater 49:14–18

    Google Scholar 

  74. Xiao YJ, Fang FZ, Xu ZW, Wu W, Shen XC (2013) The study of Ga+ FIB implanting crystal silicon and subsequent annealing. Nucl Instr Meth Phys Res Sect B Beam Interact Mater Atoms 307:253–256

    Google Scholar 

  75. McKenzie WR, Quadir MZ, Gass MH, Munroe PR (2011) Focused ion beam implantation of diamond. Diam Relat Mater 20:1125–1128

    Google Scholar 

  76. Dominguez-Rodriguez A, Cheong DS, Heuer AH, Dominguez-Rodriguez A (1991) High-temperature plastic deformation in Y2O3-stabilized ZrO2 single crystals: IV. The secondary slip systems. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 64:923–929

    Google Scholar 

  77. Wang Y, Shi J, Ji C (2014) A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation. Appl Phys A Mater Sci Process 115:1263–1279

    Google Scholar 

  78. Xiao G, To S, Zhang G (2015) Molecular dynamics modelling of brittle-ductile cutting mode transition: Case study on silicon carbide. Int J Mach Tools Manuf 88:214–222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, K., Wang, H., Zhang, X. (2020). Ductile Mode Cutting of Calcium Fluoride. In: Ductile Mode Cutting of Brittle Materials. Springer Series in Advanced Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-32-9836-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9836-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9835-4

  • Online ISBN: 978-981-32-9836-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics