Skip to main content

Nanotechnology: The Future for Cancer Treatment

  • Chapter
  • First Online:
Unravelling Cancer Signaling Pathways: A Multidisciplinary Approach
  • 793 Accesses

Abstract

Nanotechnology, which is defined as the science behind the structures within the size range of 1–100 nm, potentially holds the key to treat several chronic diseases such as cardiovascular diseases, respiratory diseases and cancer. Nanoscale structures can provide promising tools for various applications in nanomedicine including those in drug delivery of therapeutics and imaging. Present-day cancer treatments suffer from severe side effects and lack specificity, thus affecting healthy cells. Nanoparticles, however, can preferentially accumulate only at the tumour site or can be targeted to cancer cells by surface functionalization using ligands. A major advantage of nanoparticles lies in the scope of surface modification and encapsulation of poorly soluble anticancer drug. This translates into higher therapeutic efficacy and lower toxicity for nanoparticle therapeutics. Thus, nanoparticles offer myriad potential in medical science. This chapter highlights various types of nanoparticles and targeting moieties that have potential to serve as drug carriers that can selectively target tumour cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya S, Dilnawaz F, Sahoo SK (2009) Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30:5737–5750

    Article  CAS  PubMed  Google Scholar 

  • Ajima K, Murakami T, Mizoguchi Y, Tsuchida K, Ichihashi T, Iijima S, Yudasaka M (2008) Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2:2057–2064

    Article  CAS  PubMed  Google Scholar 

  • Alibolandi M, Rezvani R, Farzad SA, Taghdisi SM, Abnous K, Ramezani M (2017) Tetrac-conjugated polymersomes for integrin-targeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm 532:581–594

    Article  CAS  PubMed  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750

    Article  CAS  PubMed  Google Scholar 

  • Ansari MO, Ahmad MF, Parveen N, Ahmad S, Jameel S, Shadab GGHA (2017) Iron oxide nanoparticles-synthesis, surface modification, applications and toxicity: a review. Mater Focus 6:269–279

    Article  CAS  Google Scholar 

  • Antonelli A, Sfara C, Manuali E, Bruce IJ, Magnani M (2011) Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine 6:211–223

    Article  CAS  PubMed  Google Scholar 

  • Awada A, Bondarenko IN, Bonneterre J, Nowara E, Ferrero JM, Bakshi AV, Wilke C, Piccart M (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25:824–831

    Article  CAS  PubMed  Google Scholar 

  • Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K (2005) Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol BioSyst 1:242–250

    Article  CAS  PubMed  Google Scholar 

  • Baker JR Jr (2009) Dendrimer-based nanoparticles for cancer therapy. Hematology Am Soc Hematol Educ Program 2009:708–719

    Article  Google Scholar 

  • Bamrungsap S, Chen T, Shukoor MI, Chen Z, Sefah K, Chen Y, Tan W (2012) Pattern recognition of Cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 6:3974–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barenholz Y (2012) Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134

    Article  CAS  PubMed  Google Scholar 

  • Batist G, Gelmon KA, Chi KN, Miller WH, Chia SKL, Mayer LD, Swenson CE, Janoff AS, Louie AC (2009) Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 15:692–700

    Article  CAS  PubMed  Google Scholar 

  • Bazak R, Houri M, EL Achy S, Kamel S, Refaat T (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–784

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Leroux J-C (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Bi Y, Hao F, Yan G, Teng L, Lee RJ, Xie J (2016) Actively targeted nanoparticles for drug delivery to tumor. Curr Drug Metab 17:763–782

    Article  CAS  PubMed  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb) 47:10182–10188

    Article  CAS  Google Scholar 

  • Bibi S, Lattmann E, Mohammed AR, Perrie Y (2012) Trigger release liposome systems: local and remote controlled delivery? J Microencapsul 29:262–276

    Article  CAS  PubMed  Google Scholar 

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387

    Article  CAS  PubMed  Google Scholar 

  • Borghaei H, Smith MR, Campbell KS (2009) Immunotherapy of cancer. Eur J Pharmacol 625:41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212

    Article  Google Scholar 

  • Brown PD, Patel PR (2015) Nanomedicine: a pharma perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:125–130

    Article  CAS  PubMed  Google Scholar 

  • Bu H, He X, Zhang Z, Yin Q, Yu H, Li Y (2014) A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer. Int J Pharm 471:206–213

    Article  CAS  PubMed  Google Scholar 

  • Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6:1130–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118

    Article  CAS  PubMed  Google Scholar 

  • Chang PY, Peng SF, Lee CY, Lu CC, Tsai SC, Shieh TM, Wu TS, Tu MG, Chen MY, Yang JS (2013) Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol 43:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L, Sun Z, Guo Y, Zhong Y (2008) Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J Control Release 128:209–216

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Fan J-X, Qiu W-X, Liu L-H, Cheng H, Liu F, Yan G-P, Zhang X-Z (2017) Self-assembly drug delivery system based on programmable dendritic peptide applied in multidrug resistance tumor therapy. Macromol Rapid Commun 38:1700490

    Article  CAS  Google Scholar 

  • Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in Cancer. Clin Cancer Res 14:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Lee JH, Kim K, Kwon IC, Kim DD (2011) Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic(R) for tumor-targeted delivery of docetaxel. Biomaterials 32:7181–7190

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Jeong SY (2010) Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31:106–114

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Choi K, Jeong SY (2011a) PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 32:1880–1889

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Yoon HY, Kim JH, Bae SM, Park RW, Kang YM, Kim IS, Kwon IC, Choi K, Jeong SY, Kim K, Park JH (2011b) Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 5:8591–8599

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Saravanakumar G, Park JH, Park K (2012) Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces 99:82–94

    Article  CAS  PubMed  Google Scholar 

  • Cirstoiu-Hapca A, Buchegger F, Bossy L, Kosinski M, Gurny R, Delie F (2009) Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Eur J Pharm Sci 38:230–237

    Article  CAS  PubMed  Google Scholar 

  • Cirstoiu-Hapca A, Buchegger F, Lange N, Bossy L, Gurny R, Delie F (2010) Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: therapeutic efficacy and biodistribution in mice. J Control Release 144:324–331

    Article  CAS  PubMed  Google Scholar 

  • Cortes J, Saura C (2010) Nanoparticle albumin-bound (nab)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur J Cancer Suppl 8:1–10

    Article  CAS  Google Scholar 

  • Cross D, Burmester JK (2006) Gene therapy for cancer treatment: past, present and future. Clin Med Res 4:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, Préat V (2009) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133:11–17

    Article  CAS  PubMed  Google Scholar 

  • Datir SR, Das M, Singh RP, Jain S (2012) Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 23:2201–2213

    Article  CAS  PubMed  Google Scholar 

  • Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC (2014) State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 187:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delyagina E, Li W, Ma N, Steinhoff G (2011) Magnetic targeting strategies in gene delivery. Nanomedicine 6:1593–1604

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci 105:17356

    Article  CAS  PubMed  Google Scholar 

  • Dijkgraaf I, Rijnders AY, Soede A, Dechesne AC, VAN Esse GW, Brouwer AJ, Corstens FHM, Boerman OC, Rijkers DTS, Liskamp RMJ (2007) Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem 5:935–944

    Article  CAS  PubMed  Google Scholar 

  • Drummond DC, Noble CO, Guo Z, Hayes ME, Connolly-Ingram C, Gabriel BS, Hann B, Liu B, Park JW, Hong K, Benz CC, Marks JD, Kirpotin DB (2010) Development of a highly stable and targetable nanoliposomal formulation of topotecan. J Control Release 141:13–21

    Article  CAS  PubMed  Google Scholar 

  • Du F-S, Huang X-N, Chen G-T, Lin S-S, Liang D, Li Z-C (2010) Aqueous solution properties of the acid-labile Thermoresponsive poly(meth)acrylamides with pendent cyclic Orthoester groups. Macromolecules 43:2474–2483

    Article  CAS  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237

    Article  CAS  PubMed  Google Scholar 

  • Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM (2015) Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B: Biointerfaces 126:631–648

    Article  CAS  PubMed  Google Scholar 

  • Fabbro C, Ali-Boucetta H, Ros TD, Kostarelos K, Bianco A, Prato M (2012) Targeting carbon nanotubes against cancer. Chem Commun 48:3911–3926

    Article  CAS  Google Scholar 

  • Fadeel B (2012) Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med Wkly 142:w13609

    PubMed  Google Scholar 

  • Fahs S, Rowther FB, Dennison SR, Patil-Sen Y, Warr T, Snape TJ (2014) Development of a novel, multifunctional, membrane-interactive pyridinium salt with potent anticancer activity. Bioorg Med Chem Lett 24:3430–3433

    Article  CAS  PubMed  Google Scholar 

  • Fahs S, Patil-Sen Y, Snape TJ (2015) Foldamers as anticancer therapeutics: targeting protein–protein interactions and the cell membrane. Chembiochem 16:1840–1853

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Zhang Q (2013) Development of liposomal formulations: from concept to clinical investigations. Asian J Pharm Sci 8:81–87

    Article  CAS  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  PubMed  Google Scholar 

  • Fang RH, Hu C-MJ, Luk BT, Gao W, Copp JA, Tai Y, O’connor DE, Zhang L (2014) Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14:2181–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, Lavan DA, Langer R (2004a) Nanoparticle-Aptamer bioconjugates. A new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    Article  CAS  PubMed  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R (2004b) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    Article  CAS  PubMed  Google Scholar 

  • Feldman EJ, Kolitz JE, Trang JM, Liboiron BD, Swenson CE, Chiarella MT, Mayer LD, Louie AC, Lancet JE (2012) Pharmacokinetics of CPX-351; a nano-scale liposomal fixed molar ratio formulation of cytarabine: daunorubicin, in patients with advanced leukemia. Leuk Res 36:1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Frei E (2011) Albumin binding ligands and albumin conjugate uptake by cancer cells. Diabetol Metab Syndr 3:11–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganoth A, Merimi KC, Peer D (2015) Overcoming multidrug resistance with nanomedicines. Expert Opin Drug Deliv 12:223–238

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Fang RH, Thamphiwatana S, Luk BT, Li J, Angsantikul P, Zhang Q, Hu CM, Zhang L (2015) Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett 15:1403–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaunt NP, Patil-Sen Y, Baker MJ, Kulkarni CV (2015) Carbon nanotubes for stabilization of nanostructured lipid particles. Nanoscale 7:1090–1095

    Article  CAS  PubMed  Google Scholar 

  • Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H (2011) Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Zhang H, Wang F, Liu P, Wang Y, Xia G, Liu R, Li X, Yin H, Jiang H, Chen B (2015) Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system. Int J Nanomedicine 10:4535–4547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Lv L, Shen Y, Hu Z, He Q, Chen X (2016) A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer. Sci Rep 6:21459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2:23–39

    Article  CAS  Google Scholar 

  • Hafner A, Lovric J, Lakos GP, Pepic I (2014) Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 9:1005–1023

    PubMed  PubMed Central  Google Scholar 

  • Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol Sem Orig Inves 26:57–64

    CAS  Google Scholar 

  • Hasan W, Chu K, Gullapalli A, Dunn SS, Enlow EM, Luft JC, Tian S, Napier ME, Pohlhaus PD, Rolland JP, Desimone JM (2012) Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate Cancer. Nano Lett 12:287–292

    Article  CAS  PubMed  Google Scholar 

  • Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196

    Article  CAS  Google Scholar 

  • Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146

    Article  CAS  PubMed  Google Scholar 

  • Hilliard LR, Zhao X, Tan W (2002) Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal Chim Acta 470:51–56

    Article  CAS  Google Scholar 

  • Holgado MA, Martin-Banderas L, Alvarez-Fuentes J, Fernandez-Arevalo M, Arias JL (2012) Drug targeting to Cancer by nanoparticles surface functionalized with special biomolecules. Curr Med Chem 19:3188–3195

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Zhu S, Jiang Y, Tang G, Sun C, Fang C, Shi B, Pei Y (2010) Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Control Release 141:22–29

    Article  CAS  PubMed  Google Scholar 

  • http://www.who.int/cancer/en/ [Online]. Available: http://www.who.int/cancer/en/ [Accessed]

  • https://www.cancer.gov/about-cancer/understanding/what-is-cancer [Online]. Available: http://www.who.int/cancer/en/ [Accessed]

  • Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Nat Acad Sci 108:10980–10985

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Yadava P, Mesaros R (2010) Liposomal siRNA delivery. Meth Mol Biol Clifton NJ 605:445–459

    Article  CAS  Google Scholar 

  • Infante JR, Keedy VL, Jones SF, Zamboni WC, Chan E, Bendell JC, Lee W, Wu H, Ikeda S, Kodaira H, Rothenberg ML, Burris HA 3rd (2012) Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors. Cancer Chemother Pharmacol 70:699–705

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Chasoo G, Singh SK, Saxena AK, Jain SK (2011) Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: in vitro characterisation. J Microencapsul 28:21–28

    Article  CAS  PubMed  Google Scholar 

  • Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, Fu C, Zhang X (2012) Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 365:143–149

    Article  CAS  PubMed  Google Scholar 

  • Jie G, Wang L, Yuan J, Zhang S (2011) Versatile Electrochemiluminescence assays for Cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal Chem 83:3873–3880

    Article  CAS  PubMed  Google Scholar 

  • Jin S-E, Jin H-E, Hong S-S (2014) Targeted delivery system of Nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int 2014:23

    Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Trondoli AC, Zhu G, Chen Y, Chang Y-J, Liu H, Huang Y-F, Zhang X, Tan W (2011) Near-infrared light-responsive Core–Shell Nanogels for targeted drug delivery. ACS Nano 5:5094–5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna C, Rosenberg M, Vail DM (2015) A review of paclitaxel and novel formulations including those suitable for use in dogs. J Vet Intern Med 29:1006–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima C, Kono K, Maruyama K, Takagishi T (2000) Synthesis of Polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 11:910–917

    Article  CAS  PubMed  Google Scholar 

  • Kono K, Ozawa T, Yoshida T, Ozaki F, Ishizaka Y, Maruyama K, Kojima C, Harada A, Aoshima S (2010) Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 31:7096–7105

    Article  CAS  PubMed  Google Scholar 

  • Kontermann RE (2006) Immunoliposomes for cancer therapy. Curr Opin Mol Ther 8:39–45

    CAS  PubMed  Google Scholar 

  • Kulkarni CV, Moinuddin Z, Patil-Sen Y, Littlefield R, Hood M (2015a) Lipid-hydrogel films for sustained drug release. Int J Pharm 479:416–421

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni M, Patil-Sen Y, Junkar I, Kulkarni CV, Lorenzetti M, Iglič A (2015b) Wettability studies of topologically distinct titanium surfaces. Colloids Surf B: Biointerfaces 129:47–53

    Article  CAS  PubMed  Google Scholar 

  • Lai P-Y, Huang R-Y, Lin S-Y, Lin Y-H, Chang C-W (2015) Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic applications. RSC Adv 5:98222–98230

    Article  CAS  Google Scholar 

  • Larsen MT, Kuhlmann M, Hvam ML, Howard KA (2016) Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Therap 4:3

    Article  Google Scholar 

  • Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–250

    Article  CAS  PubMed  Google Scholar 

  • Liechty WB, Peppas NA (2012) Expert opinion: responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm 80:241–246

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhang N (2012) pH-sensitive polymeric micelles for programmable drug and gene delivery. Curr Pharm Des 18:3442–3451

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang G, Zhu W, Dong Z, Yang Y, Chao Y, Liu Z (2017) Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. Biomaterials 146:40–48

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Zhao W, Huang Y, Liu H, Marquez R, Gibbs RB, Li J, Venkataramanan R, Xu L, Li S, Li S (2014) Targeted delivery of doxorubicin by folic acid-decorated dual functional Nanocarrier. Mol Pharm 11:4164–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Cai X, Li H, Lin Y, Du D (2016) Hyaluronic acid-modified multifunctional Q-graphene for targeted killing of drug-resistant lung Cancer cells. ACS Appl Mater Interfaces 8:4048–4055

    Article  CAS  PubMed  Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324

    Article  Google Scholar 

  • Majid A, Patil-Sen Y, Ahmed W, Sen T (2017) Tunable self-assembled peptide structure: a novel approach to design dual-use biological agents. Mater Today Proc 4:32–40

    Article  Google Scholar 

  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for Cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579

    Article  CAS  PubMed  Google Scholar 

  • Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599

    Article  CAS  PubMed  Google Scholar 

  • Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anti-Cancer Drugs 10:767–776

    Article  CAS  PubMed  Google Scholar 

  • Mallick K, Strydom AM (2013) Biophilic carbon nanotubes. Colloids Surf B: Biointerfaces 105:310–318

    Article  CAS  PubMed  Google Scholar 

  • Mason VL (2010) American Association for Cancer Research-101st annual meeting investigating new therapeutic candidates: part 2. 17–21 April, 2010, Washington, DC, USA

    Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in Cancer chemotherapy: mechanism of Tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  • May JP, Li S-D (2013) Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 10:511–527

    Article  CAS  PubMed  Google Scholar 

  • Medina SH, El-Sayed MEH (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157

    Article  CAS  PubMed  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    Article  CAS  PubMed  Google Scholar 

  • Na K, Bum Lee T, Park K-H, Shin E-K, Lee Y-B, Choi H-K (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18:165–173

    Article  CAS  PubMed  Google Scholar 

  • Narain A, Asawa S, Chhabria V, Patil-Sen Y (2017) Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine 12:2677–2692

    Article  CAS  PubMed  Google Scholar 

  • Nitta S, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, Kaplan LD, Mond CD, Mamelok RD, Henry DH (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16:2445–2451

    Article  CAS  PubMed  Google Scholar 

  • Nukolova NV, Oberoi HS, Cohen SM, Kabanov AV, Bronich TK (2011) Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 32:5417–5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC (2002) Anti-HER2 immunoliposomes. Enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8:1172–1181

    CAS  PubMed  Google Scholar 

  • Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2012) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patil Y, Sadhukha T, Ma L, Panyam J (2009a) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29

    Article  CAS  PubMed  Google Scholar 

  • Patil YB, Toti US, Khdair A, Ma L, Panyam J (2009b) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30:859–866

    Article  CAS  PubMed  Google Scholar 

  • Patil-Sen YA, Chhabria V (2018) Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia applications. Taylor & Francis CRC Press, Boca Raton

    Book  Google Scholar 

  • Patil-Sen Y, Tiddy GJT, Brezesinski G, Dewolf C (2004) A monolayer phase behaviour study of phosphatidylinositol, phosphatidylinositol 4-monophosphate and their binary mixtures with distearoylphosphatidylethanolamine. Phys Chem Chem Phys 6:1562–1565

    Article  CAS  Google Scholar 

  • Patil-Sen Y, Sadeghpour A, Rappolt M, Kulkarni CV (2016) Facile preparation of internally self-assembled lipid particles stabilized by carbon nanotubes. J Visual Exp JoVE 53489

    Google Scholar 

  • Patnaik A, Papadopoulos KP, Tolcher AW, Beeram M, Urien S, Schaaf LJ, Tahiri S, Bekaii-Saab T, Lokiec FM, Rezai K, Buchbinder A (2013) Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother Pharmacol 71:1499–1506

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751

    Article  CAS  PubMed  Google Scholar 

  • Perez-Herrero E, Fernandez-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  CAS  PubMed  Google Scholar 

  • Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, Sludden J, Tilby MJ, Eatock M, Pearson DG, Ottley CJ, Matsumura Y, Kataoka K, Nishiya T (2011) A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  • Rosenberg SA (1991) Immunotherapy and gene therapy of Cancer. Cancer Res 51:5074s–5079s

    CAS  PubMed  Google Scholar 

  • Russell-Jones G, Mctavish K, Mcewan J, Rice J, Nowotnik D (2004) Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J Inorg Biochem 98:1625–1633

    Article  CAS  PubMed  Google Scholar 

  • Sah H, Thoma LA, Desu HR, Sah E, Wood GC (2013) Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine 8:747–765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112:335–340

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Sody M, Strieth S, Krasnici S, Sauer B, Schulze B, Teifel M, Michaelis U, Naujoks K, Dellian M (2003) Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res 9:2335–2341

    CAS  PubMed  Google Scholar 

  • Schroeder A, Honen R, Turjeman K, Gabizon A, Kost J, Barenholz Y (2009) Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release 137:63–68

    Article  CAS  PubMed  Google Scholar 

  • Shi X (2013) Folic acid-modified dendrimer–DOX conjugates for targeting cancer chemotherapy. J Control Release 172:e55–e56

    Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37

    Article  CAS  PubMed  Google Scholar 

  • Shipp G (2006) Ultrasensitive measurement of protein and nucleic acid biomarkers for earlier disease detection and more effective therapies. Biotechnol Healthc 3:35–40

    PubMed  PubMed Central  Google Scholar 

  • Simões S, Moreira JN, Fonseca C, Düzgüneş N, Pedroso De Lima MC (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965

    Article  PubMed  CAS  Google Scholar 

  • Sinha N, Yeow JTW (2005) Carbon nanotubes for biomedical applications. IEEE Trans Nanobioscience 4:180–195

    Article  PubMed  Google Scholar 

  • Slamon D, Godolphin W, Jones L, Holt J, Wong S, Keith D, Levin W, Stuart S, Udove J, Ullrich A, Et A (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  PubMed  Google Scholar 

  • Slingerland M, Guchelaar HJ, Rosing H, Scheulen ME, VAN Warmerdam LJ, Beijnen JH, Gelderblom H (2013) Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin Ther 35:1946–1954

    Article  CAS  PubMed  Google Scholar 

  • Sriraman SK, Pan J, Sarisozen C, Luther E, Torchilin V (2016) Enhanced cytotoxicity of folic acid-targeted liposomes co-loaded with C6 ceramide and doxorubicin: in vitro evaluation on HeLa, A2780-ADR, and H69-AR cells. Mol Pharm 13:428–437

    Article  CAS  PubMed  Google Scholar 

  • Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427

    Article  CAS  PubMed  Google Scholar 

  • Stinchcombe TE (2007) Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL-free formulation of paclitaxel. Nanomedicine (Lond) 2:415–423

    Article  CAS  Google Scholar 

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    Article  CAS  PubMed  Google Scholar 

  • Taheri A, Dinarvand R, Atyabi F, Nouri F, Ahadi F, Ghahremani MH, Ostad SN, Borougeni AT, Mansoori P (2011a) Targeted delivery of methotrexate to tumor cells using biotin functionalized methotrexate-human serum albumin conjugated nanoparticles. J Biomed Nanotechnol 7:743–753

    Article  CAS  PubMed  Google Scholar 

  • Taheri A, Dinarvand R, Nouri FS, Khorramizadeh MR, Borougeni AT, Mansoori P, Atyabi F (2011b) Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy. Int J Nanomedicine 6:1863–1874

    CAS  PubMed  Google Scholar 

  • Taheri A, Dinarvand R, Atyabi F, Ghahremani MH, Ostad SN (2012) Trastuzumab decorated methotrexate–human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells. Eur J Pharm Sci 47:331–340

    Article  CAS  PubMed  Google Scholar 

  • Tambe P, Kumar P, Karpe YA, Paknikar KM, Gajbhiye V (2017) Triptorelin tethered multifunctional PAMAM-histidine-PEG Nanoconstructs enable specific targeting and efficient gene silencing in LHRH overexpressing Cancer cells. ACS Appl Mater Interfaces 9:35562–35573

    Article  CAS  PubMed  Google Scholar 

  • Thaxton CS, Elghanian R, Thomas AD, Stoeva SI, Lee J-S, Smith ND, Schaeffer AJ, Klocker H, Horninger W, Bartsch G, Mirkin CA (2009) Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Nat Acad Sci 106:18437–18442

    Article  CAS  PubMed  Google Scholar 

  • Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB, Baker JR (2004) In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 5:2269–2274

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  CAS  PubMed  Google Scholar 

  • Visser CC, Stevanovic S, Heleen Voorwinden L, Gaillard PJ, Crommelin DJ, Danhof M, De Boer AG (2004) Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J Drug Target 12:145–150

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-XJ (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40

    PubMed  PubMed Central  Google Scholar 

  • Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99

    Article  CAS  PubMed  Google Scholar 

  • Wang AZ, Langer R, Farokhzad OC (2012a) Nanoparticle delivery of Cancer drugs. Annu Rev Med 63:185–198

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo M, Lu Y, Ding LY, Ron WT, Liu YQ, Song FF, Yu SQ (2012b) Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro. Nanotechnology 23:495103

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Xu X, Zhang Y, Zhang Y, Zhu Y, Shi J, Sun Y, Huang Q (2013) Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. J Mater Sci Mater Med 24:2137–2144

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Ren Y, Shao Y, Yu D, Meng L (2017) Facile preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@poly(N-vinyl pyrrole) for targeted synergistic chemo–Photothermal Cancer treatment. Bioconjug Chem 28:2815–2822

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Gao J, Fang RH, Luk BT, Kroll AV, Dehaini D, Zhou J, Kim HW, Gao W, Lu W, Zhang L (2016) Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 111:116–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  PubMed  Google Scholar 

  • Widera A, Norouziyan F, Shen WC (2003) Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 55:1439–1466

    Article  CAS  PubMed  Google Scholar 

  • Wood BJ, Poon RT, Locklin JK, Dreher MR, Ng KK, Eugeni M, Seidel G, Dromi S, Neeman Z, Kolf M, Black CDV, Prabhakar R, Libutti SK (2012) Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J Vasc Int Radiol 23:248–255.e7

    Article  Google Scholar 

  • Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y (2009) Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3:2740–2750

    Article  CAS  PubMed  Google Scholar 

  • Wu M-S, Yuan D-J, Xu J-J, Chen H-Y (2013) Sensitive Electrochemiluminescence biosensor based on au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem 85:11960–11965

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Wang L, Xu HQ, Huang XE, Qian YD, Xiang J (2013) Clinical comparison between paclitaxel liposome (Lipusu(R)) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 14:2591–2594

    Article  PubMed  Google Scholar 

  • Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O (2015) Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 21:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Ke H, Wang Q, Tang Y, Deng Y, Yang H, Yang X, Yang P, Ling D, Chen C, Zhao Y, Wu H, Chen H (2017) Bifunctional tellurium Nanodots for photo-induced synergistic Cancer therapy. ACS Nano 11:10012–10024

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q, Zhang P, Yang X, Cui H, Li Y (2015) Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater 14:115–124

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zhu W, Di Y, Gu J, Guo Z, Li H, Fu D, Jin C (2017a) Triple-functional albumin-based nanoparticles for combined chemotherapy and photodynamic therapy of pancreatic cancer with lymphatic metastases. Int J Nanomedicine 12:6771–6785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Wang M, Pan W, Wang H, Li N, Tang B (2017b) Tumor microenvironment-triggered fabrication of gold nanomachines for tumor-specific photoacoustic imaging and photothermal therapy. Chem Sci 8:4896–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar S, Negi LM, Verma AK, Kumar V, Tyagi A, Singh P, Iqbal Z, Talegaonkar S (2014) Sterically stabilized polymeric nanoparticles with a combinatorial approach for multi drug resistant cancer: in vitro and in vivo investigations. Int J Pharm 477:454–468

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharm Therap 83:761–769

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30:6041–6047

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Cheng X, Chen M, Sheng J, Ren J, Jiang Z, Cai J, Hu Y (2017a) Fluorescence guided photothermal/photodynamic ablation of tumours using pH-responsive chlorin e6-conjugated gold nanorods. Colloids Surf B Biointerfaces 160:345–354

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Qu X, Chen H, Kong H, Ding R, Chen D, Zhang X, Pei H, Santos HA, Hai M, Weitz DA (2017b) Fabrication of calcium phosphate-based nanocomposites incorporating DNA origami, gold Nanorods, and anticancer drugs for biomedical applications. Adv Health Mater 6

    Google Scholar 

  • Zhao M, Yang M, Li X-M, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Nat Acad Sci U S A 102:755–760

    Article  CAS  Google Scholar 

  • Zhao L, Zhao W, Liu Y, Chen X, Wang Y (2017) Nano-hydroxyapatite-derived drug and gene co-delivery system for anti-angiogenesis therapy of breast Cancer. Med Sci Monit 23:4723–4732

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F, Zhong Z (2015) Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release 205:144–154

    Article  CAS  PubMed  Google Scholar 

  • Zhu C-L, Song X-Y, Zhou W-H, Yang H-H, Wen Y-H, Wang X-R (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J Mater Chem 19:7765–7770

    Article  CAS  Google Scholar 

  • Zou L, Wang D, Hu Y, Fu C, Li W, Dai L, Yang L, Zhang J (2017) Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles. Oncotarget 8:60453–60468

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y Patil-Sen would like to thank the Daphne Jackson Trust for the fellowship which provided an opportunity for her to return to research after a career break. The fellowship is jointly funded by the Royal Society of Chemistry and the University of Central Lancashire, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogita Patil-Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil-Sen, Y., Narain, A., Asawa, S., Tavarna, T. (2019). Nanotechnology: The Future for Cancer Treatment. In: Bose, K., Chaudhari, P. (eds) Unravelling Cancer Signaling Pathways: A Multidisciplinary Approach. Springer, Singapore. https://doi.org/10.1007/978-981-32-9816-3_16

Download citation

Publish with us

Policies and ethics