Skip to main content

Polysaccharide-Based Films for Food Packaging Applications

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

The existing food packaging materials made up of fossil fuel-based polymers pose a serious threat to the environment. This is the motivation behind the extensive research on biopolymer sources including polysaccharides, proteins and lipids so as to produce biodegradable food packaging materials. Amongst the existing biopolymer sources, commendable attention has been diverted to polysaccharide materials due to their abundancy, film-forming abilities and good gas barrier properties. Despite their desirable properties, polysaccharide-based films demonstrate a poor water barrier and mechanical properties. Further, they are expensive in comparison with conventional plastic materials which restrict the commercialisation. In this regards, an extensive research effort has been made to improve the inherent properties exhibited by the biopolymer-based films by fabricating composites, nanocomposites, blends and addition of cross-linking agents. Amongst available, starch is a kind of polysaccharides consisting of different ratios of amylose and amylopectin, which determines its property. Modified starch with other polymers/nanofillers exhibits improved film properties. In addition, cellulosic derivatives as ionic binders are of a good choice in controlling the moisture and also enhance the mechanical properties of food packaging films. Moreover, chitosan like polysaccharide exhibits an antibacterial activity which is an important property to produce films of higher shelf life and to maintain product integrity. The quest for producing low-cost biodegradable food packaging films derived from polysaccharides with better water barrier and mechanical properties is a never-ending process and demands a multidisciplinary approach to accomplish this goal. The present chapter mainly focuses on recent research accomplishments on polysaccharide-based films for food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364:1985–1998. https://doi.org/10.1098/rstb.2008.0205

    Article  CAS  Google Scholar 

  2. Prashanth HKV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131. https://doi.org/10.1016/j.tifs.2006.10.022

    Article  CAS  Google Scholar 

  3. Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) (1994) Edible coatings and films to improve food quality. Technomic Publ Co. Inc, Basel, pp 305–336

    Google Scholar 

  4. Faria FDO, Vercelheze AES, Mali S (2012) Physical properties of biodegradable films based on cassava starch, polyvinyl alcohol and montmorillonite. Quím Nova 35:487–492. https://doi.org/10.1590/S0100-40422012000300009

    Article  CAS  Google Scholar 

  5. Toral FLB, Furlan AC, Scapinello C, Peralta RM, Figueiredo DF (2002) Digestibility of two starch sources and enzymatic activity of 35 and 45 days old rabbits. R Bras Zootec 31:1434–1441. https://doi.org/10.1590/S1516-35982002000600015

    Article  Google Scholar 

  6. Souza AC, Benze R, Ferrão ES, Ditchfield C, Coelho ACV, Tadini CC (2012) Cassava starch biodegradable films: influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT-Food Sci Technol 46:110–117. https://doi.org/10.1016/j.lwt.2011.10.018

    Article  CAS  Google Scholar 

  7. Azeredo HM, Waldron KW (2016) Crosslinking in polysaccharide and protein films and coatings for food contact—a review. Trends Food Sci Technol 52:109–122. https://doi.org/10.1016/j.tifs.2016.04.008

    Article  CAS  Google Scholar 

  8. Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:611. https://doi.org/10.3389/fmicb.2015.00611

    Article  Google Scholar 

  9. Ren L, Yan X, Zhou J, Tong J, Su X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643. https://doi.org/10.1016/j.ijbiomac.2017.02.008

    Article  CAS  Google Scholar 

  10. Cazon P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  11. Siracusa V, Rocculi P, Romani S, Rosa DM (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  12. Kale G, Auras R, Singh SP (2006) Degradation of commercial biodegradable packages under real composting and ambient exposure conditions. J Polym Environ 14:317–334. https://doi.org/10.1007/s10924-006-0015-6

    Article  CAS  Google Scholar 

  13. Khalil HA, Banerjee A, Saurabh CK, Tye YY, Suriani AB, Mohamed A, Karim AA, Rizal S, Paridah MT (2018) Biodegradable films for fruits and vegetables packaging application: preparation and properties. Food Eng Rev 10:1–15. https://doi.org/10.1007/s12393-018-9180-3

    Article  CAS  Google Scholar 

  14. Solano ACV, de Rojas Gante C (2012) Two different processes to obtain antimicrobial packaging containing natural oils. Food Bioprocess Tech 5:2522–2528. https://doi.org/10.1007/s11947-011-0626-3

    Article  CAS  Google Scholar 

  15. Cirillo G, Spizzirri UG, Iemma F (eds) (2015) Functional polymers in food science: from technology to biology, vol 1. Food packaging. Wiley, Hoboken, NJ

    Google Scholar 

  16. Donhowe IG, Fennema OR (1993) The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. J Food Process Preserv 17:247–257. https://doi.org/10.1111/j.1745-4549.1993.tb00729.x

    Article  CAS  Google Scholar 

  17. Su JF, Yuan XY, Huang Z, Wang XY, Lu XZ, Zhang LD, Wang SB (2012) Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: color, transparency and heat-sealing ability. Mater Sci Eng C 32:40–46. https://doi.org/10.1016/j.msec.2011.09.009

    Article  CAS  Google Scholar 

  18. Garcia MA, Martino MN, Zaritzky NE (1998) Plasticized starch-based coatings to improve strawberry (fragaria × ananassa) quality and stability. J Agric Food Chem 46:3758–3767. https://doi.org/10.1021/jf980014c

    Article  CAS  Google Scholar 

  19. Bastarrachea L, Dhawan S, Sablani SS (2011) Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng Rev 3:79–93. https://doi.org/10.1007/s12393-011-9034-8

    Article  Google Scholar 

  20. Galliard T (1987) Starch: properties and potential. Elsevier, Amsterdam, pp 1–151

    Google Scholar 

  21. Alcázar-Alay SC, Meireles MAA (2015) Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol (Campinas) 35:215–236. https://doi.org/10.1590/1678-457X.6749

    Article  Google Scholar 

  22. Singh N, Singh J, Kaur L, Sodhi NS, Gill BS (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231. https://doi.org/10.1016/S0308-8146(02)00416-8

    Article  CAS  Google Scholar 

  23. Conde-Petit B, Nuessli J, Arrigoni E, Escher F, Amadò R (2001) Perspectives of starch in food science. Chimia 55:201–205

    CAS  Google Scholar 

  24. Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF (1988) The terminology and methodology associated with basic starch phenomenon. CeR Foods World 33:306–311

    Google Scholar 

  25. Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267. https://doi.org/10.1016/S0144-8617(00)00260-5

    Article  CAS  Google Scholar 

  26. Stevens DJ, Elton GAH (1971) Thermal properties of the starch/water system part I. measurement of heat of gelatinisation by differential scanning calorimetry. Starch-Starke 23:8–11. https://doi.org/10.1002/star.19710230104

    Article  CAS  Google Scholar 

  27. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890. https://doi.org/10.1021/ie990690j

    Article  CAS  Google Scholar 

  28. Santana A, Angela M (2014) New starches are the trend for industry applications: a review. Food Public Health 4:229–241. https://doi.org/10.5923/j.fph.20140405.04

    Article  Google Scholar 

  29. Ghanbarzadeh B, Almasi H, Entezami AA (2010) Physical properties of edible modified starch/carboxymethyl cellulose films. Innov Food Sci Emerg Technol 11:697–702. https://doi.org/10.1016/j.ifset.2010.06.001

    Article  CAS  Google Scholar 

  30. Kraak A (1992) Industrial applications of potato starch products. Ind Crops Prod 1:107–112. https://doi.org/10.1016/0926-6690(92)90007-I

    Article  CAS  Google Scholar 

  31. Ratnayake WS, Hoover R, Warkentin T (2002) Pea starch: composition, structure and properties—a review. Starch-Starke 54:217–234. https://doi.org/10.1002/1521-379X(200206)54:6%3c217:AID-STAR217%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  32. Bertuzzi MA, Gottifredi JC, Armada M (2012) Mechanical properties of a high amylose content corn starch based film, gelatinized at low temperature. Braz J Food Technol Campinas 15:219–227. https://doi.org/10.1590/S1981-67232012005000015

    Article  CAS  Google Scholar 

  33. Wang C, He XW, Huang Q, Fu X, Liu S (2013) Physicochemical properties and application of micronized cornstarch in low fat cream. J Food Eng 116:881–888. https://doi.org/10.1016/j.jfoodeng.2013.01.025

    Article  CAS  Google Scholar 

  34. Wongsagonsup R, Pujchakarn T, Jitrakbumrung S, Chaiwat W, Fuongfuchat A, Varavinit S, Dangtip S, Suphantharika M (2014) Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydr Polym 101:656–665. https://doi.org/10.1016/j.carbpol.2013.09.100

    Article  CAS  Google Scholar 

  35. Amagliani L, O’Regan J, Kelly AL, O’Mahony JA (2016) Chemistry, structure, functionality and applications of rice starch. J Cereal Sci 70:291–300. https://doi.org/10.1016/j.jcs.2016.06.014

    Article  CAS  Google Scholar 

  36. Shevkani K, Singh N, Bajaj R, Kaur A (2017) Wheat starch production, structure, functionality and applications—a review. Int J Food Sci Technol 52:38–58. https://doi.org/10.1111/ijfs.13266

    Article  CAS  Google Scholar 

  37. Sarka E, Dvoracek V (2017) New processing and applications of waxy starch (a review). J Food Eng 206:77–87. https://doi.org/10.1016/j.jfoodeng.2017.03.006

    Article  CAS  Google Scholar 

  38. Paunonen S (2013) Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 8:3098–3121

    Article  Google Scholar 

  39. Tongdeesoontorn W, Mauer LJ, Wongruong S, Sriburi P, Rachtanapun P (2011) Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem Cent J 5:6. https://doi.org/10.1186/1752-153X-5-6

    Article  CAS  Google Scholar 

  40. Mujtaba A, Kohli K (2016) In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoximeproxetil. Int J Biol Macromol 89:434–441. https://doi.org/10.1016/j.ijbiomac.2016.05.010

    Article  CAS  Google Scholar 

  41. Chen H, An Y, Yan X, McClements DJ, Li B, Li Y (2015) Designing self-nanoemulsifying delivery systems to enhance bioaccessibility of hydrophobic bioactives (nobiletin): influence of hydroxypropyl methylcellulose and thermal processing. Food Hydrocoll 51:395–404. https://doi.org/10.1016/j.foodhyd.2015.05.032

    Article  CAS  Google Scholar 

  42. de Dicastillo CL, Bustos F, Guarda A, Galotto MJ (2016) Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll 60:335–344. https://doi.org/10.1016/j.foodhyd.2016.03.020

    Article  CAS  Google Scholar 

  43. Balasubramaniam VM, Chinnan MS, Mallikarjunan P, Phillips RD (1997) The effect of edible film on oil uptake and moisture retention of a deep-fat fried poultry product. J Food Process Eng 20:17–29. https://doi.org/10.1111/j.1745-4530.1997.tb00408.x

    Article  Google Scholar 

  44. Nelson KL, Fennema OR (1991) Methylcellulose films to prevent lipid migration in confectionery products. J Food Sci 56:504–509. https://doi.org/10.1111/j.1365-2621.1991.tb05314.x

    Article  CAS  Google Scholar 

  45. Tang ZX, Qian JQ, Shi LE (2007) Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Appl Biochem Biotechnol 136:77–96. https://doi.org/10.1007/BF02685940

    Article  CAS  Google Scholar 

  46. Loredo RYA, Rodríguez-Hernández AI, Morales-Sánchez E, Gómez-Aldapa CA, Velazquez G (2016) Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chem 196:560–566. https://doi.org/10.1016/j.foodchem.2015.09.065

    Article  CAS  Google Scholar 

  47. Tan YM, Lim SH, Tay BY, Lee MW, Thian ES (2015) Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology. Mater Res Bull 69:142–146. https://doi.org/10.1016/j.materresbull.2014.11.041

    Article  CAS  Google Scholar 

  48. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Sci Technol 43:837–842. https://doi.org/10.1016/j.lwt.2010.01.021

    Article  CAS  Google Scholar 

  49. van den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242. https://doi.org/10.1016/j.carbpol.2014.07.039

    Article  CAS  Google Scholar 

  50. Nazan Turhan K, Şahbaz F (2004) Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. J Food Eng 61:459–466. https://doi.org/10.1016/S0260-8774(03)00155-9

    Article  Google Scholar 

  51. Muscat D, Adhikari B, Adhikari R, Chaudhary DS (2012) Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers. J Food Eng 109:189–201. https://doi.org/10.1016/j.jfoodeng.2011.10.019

    Article  CAS  Google Scholar 

  52. Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2010) Biodegradable films based on rice starch and rice flour. J Cereal Sci 51:213–219. https://doi.org/10.1016/j.jcs.2009.11.014

    Article  CAS  Google Scholar 

  53. Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Zhang L, Tian W (2008) The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr Polym 74:763–770. https://doi.org/10.1016/j.carbpol.2008.04.045

    Article  CAS  Google Scholar 

  54. Bonilla J, Talón E, Atarés L, Vargas M, Chiralt A (2013) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch—chitosan films. J Food Eng 118:271–278. https://doi.org/10.1016/j.jfoodeng.2013.04.008

    Article  CAS  Google Scholar 

  55. Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460. https://doi.org/10.1002/app.28660

    Article  CAS  Google Scholar 

  56. Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch—chitosan blend biodegradable film. LWT-Food Sci Technol 41:1633–1641. https://doi.org/10.1016/j.lwt.2007.10.014

    Article  CAS  Google Scholar 

  57. Alves VD, Mali S, Beléia A, Grossmann MVE (2007) Effect of glycerol and amylose enrichment on cassava starch film properties. J Food Eng 78:941–946. https://doi.org/10.1016/j.jfoodeng.2005.12.007

    Article  CAS  Google Scholar 

  58. El Mohdy HA (2007) Synthesis of starch based plastic films by electron beam irradiation. J Appl Polym Sci 104:504–513. https://doi.org/10.1002/app.25524

    Article  CAS  Google Scholar 

  59. Da Roz AL, Carvalho AJF, Gandini A, Curvelo AAS (2006) The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63:417–424. https://doi.org/10.1016/j.carbpol.2005.09.017

    Article  CAS  Google Scholar 

  60. Mali S, Grossmann MVE, García MA, Martino MN, Zaritzky NE (2006) Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J Food Eng 75:453–460. https://doi.org/10.1016/j.jfoodeng.2005.04.031

    Article  CAS  Google Scholar 

  61. Tang X, Alavi S, Herald TJ (2008) Barrier and mechanical properties of starch-clay nanocomposite films. Cereal Chem 85:433–439. https://doi.org/10.1094/CCHEM-85-3-0433

    Article  CAS  Google Scholar 

  62. Muller CMO, Laurindo JB, Yamashita F (2009) Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocoll 23:1328–1333. https://doi.org/10.1016/j.foodhyd.2008.09.002

    Article  CAS  Google Scholar 

  63. Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113:511–519. https://doi.org/10.1016/j.jfoodeng.2012.07.017

    Article  CAS  Google Scholar 

  64. Souza AC, Goto GEO, Mainardi JA, Coelho ACV, Tadini CC (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT-Food Sci Technol 54:346–352. https://doi.org/10.1016/j.lwt.2013.06.017

    Article  CAS  Google Scholar 

  65. Barzegar H, Azizi MH, Barzegar M, Hamidi-Esfahani Z (2014) Effect of potassium sorbate on antimicrobial and physical properties of starch—clay nanocomposite films. Carbohydr Polym 110:26–31. https://doi.org/10.1016/j.carbpol.2014.03.092

    Article  CAS  Google Scholar 

  66. Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439. https://doi.org/10.1016/j.carbpol.2014.04.024

    Article  CAS  Google Scholar 

  67. Agustin MB, Ahmmad B, Alonzo SMM, Patriana FM (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33:2205–2213. https://doi.org/10.1177/0731684414558325

    Article  CAS  Google Scholar 

  68. Nisa IU, Ashwar BA, Shah A, Gani A, Gani A, Masoodi FA (2015) Development of potato starch based active packaging films loaded with antioxidants and its effect on shelf life of beef. J Food Sci Technol 52:7245–7253. https://doi.org/10.1007/s13197-015-1859-3

    Article  CAS  Google Scholar 

  69. Cano A, Cháfer M, Chiralt A, González-Martínez C (2016) Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packag Shelf Life 10:16–24. https://doi.org/10.1016/j.fpsl.2016.07.002

    Article  Google Scholar 

  70. Ji N, Qin Y, Xi T, Xiong L, Sun Q (2017) Effect of chitosan on the antibacterial and physical properties of corn starch nanocomposite films. Starch/Stärke 69:1600114–16000122. https://doi.org/10.1002/star.201600114

    Article  CAS  Google Scholar 

  71. Mirjalili F, Yassini Ardekani A (2017) Preparation and characterization of starch film accompanied with ZnO nanoparticles. J Food Process Eng 40:12561. https://doi.org/10.1111/jfpe.12561

    Article  CAS  Google Scholar 

  72. Ounkaew A, Kasemsiri P, Kamwilaisak K, Saengprachatanarug K, Mongkolthanaruk W, Souvanh M, Pongsa U, Chindaprasirt P (2018) Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid. J Polym Environ 26:1–11. https://doi.org/10.1007/s10924-018-1254-z

    Article  CAS  Google Scholar 

  73. Zahedi Y, Fathi-Achachlouei B, Yousefi AR (2018) Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int J Biol Macromol 108:863–873. https://doi.org/10.1016/j.ijbiomac.2017.10.185

    Article  CAS  Google Scholar 

  74. Achachlouei BF, Zahedi Y (2018) Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr Polym 199:415–425. https://doi.org/10.1016/j.carbpol.2018.07.031

    Article  CAS  Google Scholar 

  75. George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy S (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292. https://doi.org/10.1016/j.carbpol.2014.01.057

    Article  CAS  Google Scholar 

  76. Uranga J, Puertas AI, Etxabide A, Dueñas MT, Guerrero P, de la Caba K (2019) Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocoll 86:95–103. https://doi.org/10.1016/j.foodhyd.2018.02.018

    Article  CAS  Google Scholar 

  77. Domene-López D, Guillén MM, Martin-Gullon I, García-Quesada JC, Montalbán MG (2018) Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydr Polym 202:299–305. https://doi.org/10.1016/j.carbpol.2018.08.137

    Article  CAS  Google Scholar 

  78. Tao F, Shi C, Cui Y (2018) Preparation and physicochemistry properties of smart edible films based on gelatin—starch nanoparticles. J Sci Food Agric 98:5470–5478. https://doi.org/10.1002/jsfa.9091

    Article  CAS  Google Scholar 

  79. Zheng K, Li W, Fu B, Fu M, Ren Q, Yang F, Qin C (2018) Physical, antibacterial and antioxidant properties of chitosan films containing hardleaf oatchestnut starch and Litsea cubeba oil. Int J Biol Macromol 118:707–715. https://doi.org/10.1016/j.ijbiomac.2018.06.126

    Article  CAS  Google Scholar 

  80. Sun H, Shao X, Jiang R, Shen Z, Ma Z (2018) Mechanical and barrier properties of corn distarch phosphate-zein bilayer films by thermocompression. Int J Biol Macromol 118:2076–2081. https://doi.org/10.1016/j.ijbiomac.2018.07.069

    Article  CAS  Google Scholar 

  81. Lin D, Huang Y, Liu Y, Luo T, Xing B, Yang Y, Yang Z, Wu Z, Chen H, Zhang Q, Qin W (2018) Physico-mechanical and structural characteristics of starch/polyvinyl alcohol/nano-titania photocatalytic antimicrobial composite films. LWT 102:1–19. https://doi.org/10.1016/j.lwt.2018.06.001

    Article  CAS  Google Scholar 

  82. Feng M, Yu L, Zhu P, Zhou X, Liu H, Yang Y, Zhou J, Gao C, Bao X, Chen P (2018) Development and preparation of active starch films carrying tea polyphenol. Carbohydr Polym 196:162–167. https://doi.org/10.1016/j.carbpol.2018.05.043

    Article  CAS  Google Scholar 

  83. Siripatrawan U, Kaewklin P (2018) Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll 84:125–134. https://doi.org/10.1016/j.foodhyd.2018.04.049

    Article  CAS  Google Scholar 

  84. Shankar S, Rhim JW (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll 82:116–123. https://doi.org/10.1016/j.foodhyd.2018.03.054

    Article  CAS  Google Scholar 

  85. Priyadarshi R, Kumar B, Negi YS (2018) Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydr Polym 195:329–338. https://doi.org/10.1016/j.carbpol.2018.04.089

    Article  CAS  Google Scholar 

  86. Otoni CG, Lorevice MV, de Moura MR, Mattoso LH (2018) On the effects of hydroxyl substitution degree and molecular weight on mechanical and water barrier properties of hydroxypropyl methylcellulose films. Carbohydr Polym 185:105–111. https://doi.org/10.1016/j.carbpol.2018.01.016

    Article  CAS  Google Scholar 

  87. Luchese CL, Spada JC, Tessaro IC (2017) Starch content affects physicochemical properties of corn and cassava starch-based films. Ind Crops Prod 109:619–626. https://doi.org/10.1016/j.indcrop.2017.09.020

    Article  CAS  Google Scholar 

  88. Noshirvani N, Ghanbarzadeh B, Gardrat C, Rezaei MR, Hashemi M, Le Coz C, Coma V (2017) Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll 70:36–45. https://doi.org/10.1016/j.foodhyd.2017.03.015

    Article  CAS  Google Scholar 

  89. Saberi B, Vuong QV, Chockchaisawasdee S, Golding JB, Scarlett CJ, Stathopoulos CE (2016) Mechanical and physical properties of pea starch edible films in the presence of glycerol. J Food Process Preserv 40:1339–1351. https://doi.org/10.1111/jfpp.12719

    Article  CAS  Google Scholar 

  90. Claro PIC, Neto ARS, Bibbo ACC, Mattoso LHC, Bastos MSR, Marconcini JM (2016) Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films. J Polym Environ 24:363–371. https://doi.org/10.1007/s10924-016-0785-4

    Article  CAS  Google Scholar 

  91. Zhou M, Liu Q, Wu S, Gou Z, Wu X, Xu D (2016) Starch/chitosan films reinforced with polydopamine modified MMT: effects of dopamine concentration. Food Hydrocoll 61:678–684. https://doi.org/10.1016/j.foodhyd.2016.06.030

    Article  CAS  Google Scholar 

  92. Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Dufresne A (2016) Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym 151:9–19. https://doi.org/10.1016/j.carbpol.2016.05.023

    Article  CAS  Google Scholar 

  93. El Halal SLM, Colussi R, Deon VG, Pinto VZ, Villanova FA, Carreño NLV, Dias ARG, da Rosa Zavareze E (2015) Films based on oxidized starch and cellulose from barley. Carbohydr Polym 133:644–653. https://doi.org/10.1016/j.carbpol.2015.07.024

    Article  CAS  Google Scholar 

  94. Li HZ, Chen SC, Wang YZ (2015) Preparation and characterization of nanocomposites of polyvinyl alcohol/cellulose nanowhiskers/chitosan. Compos Sci Technol 115:60–65. https://doi.org/10.1016/j.compscitech.2015.05.004

    Article  CAS  Google Scholar 

  95. Dayarian S, Zamani A, Moheb A, Masoomi M (2014) Physico-mechanical properties of films of chitosan, carboxymethyl chitosan, and their blends. J Polym Environ 22:409–416. https://doi.org/10.1007/s10924-014-0672-9

    Article  CAS  Google Scholar 

  96. Olsson E, Menzel C, Johansson C, Andersson R, Koch K, Järnström L (2013) The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. Carbohydr Polym 98:1505–1513. https://doi.org/10.1016/j.carbpol.2013.07.040

    Article  CAS  Google Scholar 

  97. Rao MS, Kanatt SR, Chawla SP, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym 82:1243–1247. https://doi.org/10.1016/j.carbpol.2010.06.058

    Article  CAS  Google Scholar 

  98. Chang PR, Jian R, Yu J, Ma X (2010) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740. https://doi.org/10.1016/j.foodchem.2009.11.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Department of Chemical Engineering, Indian Institute of Technology Guwahati (IITG), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anandalakshmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dharmalingam, K., Anandalakshmi, R. (2019). Polysaccharide-Based Films for Food Packaging Applications. In: Katiyar, V., Gupta, R., Ghosh, T. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-32-9804-0_9

Download citation

Publish with us

Policies and ethics