Skip to main content

Biomaterials for Biomedical Devices and Implants

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Abstract

India is currently importing different types of medical implants and devices, which cost about 0.65 million USD. Most of the imported implants and devices are found to be expensive and not suitable for Indian patients because of their design limitations. Thus, it is very much essential to develop indigenous devices at an affordable cost without compromising their functional activities. The chapter will discuss the design and development of patient-specific biomedical devices and implants as per ISO/ASTM standards in order to meet their individual requirements. In the specified area, the products being developed by our research team have been kept under two different categories namely implants and biomedical devices. Under the implant category, the products such as (i) ultrahigh molecular weight polyethylene-based acetabular cup, (ii) 3D printed shape memory polyurethane-based aneurysm coil, and (iii) different types of cerium-based anti-scavenging materials to absorb the excess reactive oxygen species (ROS) to preserve the residual hearing after cochlear implant fixation are being developed and tested. In case of biomedical devices, prosthetic and orthotic devices such as (i) polymer-based polycentric knee joint, (ii) dynamic foot, (iii) custom-made ankle-foot orthosis, (iv) suction and suspension incorporated socket for lower limb amputees, and (v) direct socket fabrication system are being developed and trialled. A discussion on the different materials including polymers, ceramic, and composites which are used to improve the performance of the above-discussed biomedical devices and implants will be deliberated in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang W, Lin R, Stark C, Dumbleton JH (1999) Suitability and limitations of carbon fiber reinforced PEEK composites as bearing surfaces for total joint replacements. Wear 225:724–727. https://doi.org/10.1016/S0043-1648(99)00026-5

    Article  Google Scholar 

  2. Zoo YS, An JW, Lim DP, Lim DS (2003) Effect of carbon nanotube addition on tribological behavior of UHMWPE. Tribol Lett 16:305–309. https://doi.org/10.1023/B:TRIL.0000015206.21688.87

    Article  Google Scholar 

  3. Wang Q, Zhang D, Ge S (2007) Biotribological behavior of ultra-high molecular weight polyethylene composites containing Ti in a hip joint simulator. Proc Inst Mech Eng J-J Eng 221:307–313. https://doi.org/10.1243/13506501JET232

    Article  CAS  Google Scholar 

  4. Liu JL, Zhu YY, Wang QL, Ge SR (2008) Biotribological behavior of Ultra high molecular weight polyethylene composites containing bovine bone hydroxyapatite. J China Univ Min Technol 18:606–612. https://doi.org/10.1016/S1006-1266(08)60303-X

    Article  CAS  Google Scholar 

  5. Ge S, Wang S, Huang X (2009) Increasing the wear resistance of UHMWPE acetabular cups by adding natural biocompatible particles. Wear 267:770–776. https://doi.org/10.1016/j.wear.2009.01.057

    Article  CAS  Google Scholar 

  6. Plumlee K, Schwartz CJ (2009) Improved wear resistance of orthopaedic UHMWPE by reinforcement with zirconium particles. Wear 267:710–717. https://doi.org/10.1016/j.wear.2008.11.028

    Article  CAS  Google Scholar 

  7. Borruto A (2010) A new material for hip prosthesis without considerable debris release. Med Eng Phys 32:908–913. https://doi.org/10.1016/j.medengphy.2010.06.007

    Article  Google Scholar 

  8. Wood WJ, Maguire RG, Zhong WH (2011) Improved wear and mechanical properties of UHMWPE–carbon nanofiber composites through an optimized paraffin-assisted melt-mixing process. Compos B Eng 42:584–591. https://doi.org/10.1016/j.compositesb.2010.09.006

    Article  CAS  Google Scholar 

  9. Tai Z, Chen Y, An Y, Yan X, Xue Q (2012) Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol Lett 46:55–63. https://doi.org/10.1007/s11249-012-9919-6

    Article  CAS  Google Scholar 

  10. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, Seal S, Jenkins DW, Baker CH (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed Nanotechnol Biol Med 5:225–231. https://doi.org/10.1016/j.nano.2008.10.003

    Article  CAS  Google Scholar 

  11. Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150. https://doi.org/10.1038/nnano.2006.91

    Article  CAS  Google Scholar 

  12. Hewlings S, Kalman D (2017) Curcumin: a review of its effects on human health. Foods 6:92. https://doi.org/10.3390/foods6100092

    Article  CAS  Google Scholar 

  13. Lee SS, Song W, Cho M, Puppala HL, Nguyen P, Zhu H, Segatori L, Colvin VL (2013) Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7:9693–9703. https://doi.org/10.1021/nn4026806

    Article  CAS  Google Scholar 

  14. Tsai YY, Oca-Cossio J, Lin SM, Woan K, Yu PC, Sigmund W (2008) Reactive oxygen species scavenging properties of ZrO2–CeO2 solid solution nanoparticles. Nanomedicine 3:637–645. https://doi.org/10.2217/17435889.3.5.637

    Article  CAS  Google Scholar 

  15. Eriksson P, Tal AA, Skallberg A, Brommesson C, Hu Z, Boyd RD, Olovsson W, Neal Fairley, Abrikosov IA, Zhang X, Uvdal K (2018) Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-25390-z

    Article  CAS  Google Scholar 

  16. Li X, Zhao G, Zhang J, Duan Z, Xin S (2013) Prevalence and trends of the abdominal aortic aneurysms epidemic in general population—a meta-analysis. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0081260

    Article  CAS  Google Scholar 

  17. Qureshi AI, Janardhan V, Hanel RA, Lanzino G (2007) Comparison of endovascular and surgical treatments for intracranial aneurysms: an evidence-based review. Lancet Neurol 6:816–825. https://doi.org/10.1016/S1474-4422(07)70217-X

    Article  Google Scholar 

  18. Vaidya S, Tozer KR, Chen J (2008) An overview of embolic agents. Semin Intervent Radiol 25:204–215. https://doi.org/10.1055/s-0028-1085930

    Article  Google Scholar 

  19. Kashyap D, Kumar PK, Kanagaraj S (2018) 4D printed porous radiopaque shape memory polyurethane for endovascular embolization. Addit Manuf 24:687–695. https://doi.org/10.1016/j.addma.2018.04.009

    Article  CAS  Google Scholar 

  20. Ohki T, Ni QQ, Ohsako N, Iwamoto M (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos Part A Appl Sci Manuf 35:1065–1073. https://doi.org/10.1016/j.compositesa.2004.03.001

    Article  CAS  Google Scholar 

  21. Ranger BJ, Mantzavinou A (2017) A course in prosthetics for the developing world: Merging education, research, and industry to teach biomedical design for social impact. In: Engineering in Medicine and Biology Society (EMBC), 39th annual international conference of the IEEE, pp 30–33. doi:978-1-5090-2809-2/17

    Google Scholar 

  22. Prosthetic and Orthotic Care (2017) Available on http://www.pandocare.com/transfemoral-knee-disarticulation/. Accessed on 08 Jan 2019

  23. Physiopedia (2018) Available at. https://www.physio-pedia.com. Accessed on 25 Oct 2018

  24. Ali S, Osman NAA, Naqshbandi MM, Eshraghi A, Kamyab M, Gholizadeh H (2012) Qualitative study of prosthetic suspension systems on transtibial amputees’ satisfaction and perceived problems with their prosthetic devices. Arch Phys Med Rehabil 93:1919–1923. https://doi.org/10.1016/j.apmr.2012.04.024

    Article  Google Scholar 

  25. Ossur Life Without Limitation. Available at https://www.ossur.com/prosthetic-soliutions/liner-sleeves. Accessed on 6 Aug 2018

  26. Gholizadeh H, Osman NAA, Eshragji A, Ali S, Yahyavi ES (2013) Satisfaction and problems experienced with transfemoral suspension system: a comparison between the common suction socket and seal-in liner. Arch Phys Med Rehabil 94:1584–1589. https://doi.org/10.1016/j.apmr.2012.12.00710

    Article  Google Scholar 

  27. Kahle JT, Orriola JJ, Johnston W, Highsmith MJ (2014) The effect of vacuum-assisted suspension on residual limb physiology, wound healing and function: a systematic review. Technol Innov 15:333–341. https://doi.org/10.3727/194982413X13844488879177

    Article  Google Scholar 

  28. Digital Resource Foundation for the Orthotics and Prosthetics Community. Available at http://www.drfop.org. Accessed on 25 Dec 2018

  29. Jin YA, Plott J, Chen R, Wensman J, Shin A (2014) Additive manufacturing of custom orthoses and prostheses—a review. Procedia CIRP 36:199–204. https://doi.org/10.1016/j.addma.2016.04.002

    Article  CAS  Google Scholar 

  30. Clombo G, Filippi S, Rizzi C, Rotini F (2010) A new design paradigm for the development of custom-fit soft sockets for the lower prostheses. Comput Ind 61:513–523. https://doi.org/10.1016/j.compind.2010.03.008

    Article  Google Scholar 

  31. Olafsson S, Ingimarsson G, Landry D (2014) Knee rotational adaptor. US Patent App. 14/175, 507

    Google Scholar 

  32. Wu X (2012) Rotation structure of knee joint of artificial limb. US Patent App. 13/228,472

    Google Scholar 

  33. Cavuto ML, Chun M, Kelsall N, Baranov K, Durhin K, Zho M, Winter AG (2016) Design of mechanism and preliminary field validation of low cost transfemoral rotator for the use in the developing world. ASME. 1–9. https://doi.org/10.1115/detc2016-59913

  34. Andrysek J, Naumann S, Cleghorn WL (2004) Design characteristics of pediatric prosthetic knees. IEEE Trans Neural Syst Rehabil Eng 12:369–378. https://doi.org/10.1109/TNSRE.2004.838444

    Article  Google Scholar 

  35. Seid S, Sujatha S, Chnadramohan S (2015) Design of controller for single axis knee using hydraulic damper. Africon, 1–5. https://doi.org/10.1109/afrcon.2015.7331868

  36. Radcliffe CW (1977) The Knud Jansen lectur: above-knee prosthetics. Prosthet Orthot Int 1:146–160. https://doi.org/10.3109/03093647709164629

    Article  CAS  Google Scholar 

  37. Radcliffe CW, Deg M (2003) Biomechanics of knee stability control with four-bar prosthetic knees. Int Soc Prosthet Orthot 2:290–298

    Google Scholar 

  38. Oberg K (1983) Knee mechanism for through knee prostheses. Prosthet Orthot Int 7:107–112. https://doi.org/10.3109/03093648309146733

    Article  CAS  Google Scholar 

  39. Radcliffe CW (1994) Four-bar linkage prosthetic knee mechanisms: kinematics, alignment and prescription criteria. Prosthet Orthot Int 18:159–173. https://doi.org/10.3109/03093649409164401

    Article  CAS  Google Scholar 

  40. Gramnaes L (2014) Combined active and passive leg prosthesis system and a method for performing a movement 119th such a system. Google Patents. US Patent 8814949

    Google Scholar 

  41. Jaiswal VK, Kumar A, Khatait J, Saha S (2015) Lower limb prosthetic device, BTP report. Department of Mechanical Engineering, Indian Institute of Technology, Delhi, 2015

    Google Scholar 

  42. Furse A, Cleghorn W, Andrysek J (2011) Improving the gait performance of nonfluid-based swing-phase control mechanisms in trans femoral prostheses. IEEE Biomed Eng 58:2352–2359. https://doi.org/10.1109/TBME.2011.2155059

    Article  Google Scholar 

  43. Arun S, Kanagaraj S (2016) Injection moldable polymeric composite based passive polycentric joint. Google Patents. US Patent App. 14/840.052

    Google Scholar 

  44. Zeng Y (2009) Design and testing of a passive prosthetic ankle with mechanical performance similar to that of a natural ankle. Master’s thesis, Marquette University

    Google Scholar 

  45. Kobayashi T, Leung AK, Akazawa Y, Hutchins SW (2013) The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke. Gait Posture 37:457–459. https://doi.org/10.1016/j.gaitpost.2012.07.028

    Article  Google Scholar 

  46. Muhammad I, Rakib I, Ahmed C, Sajjad H, Noor A, Abu O (2015) Design and biomechanical performance analysis of a user-friendly orthotic device. Mater Des 65:716–725

    Article  Google Scholar 

  47. Daniel PF, Joseph MC, Blake H (2005) An ankle-foot orthosis powered by artificial muscles. J Appl Biomech 21:189–197

    Article  Google Scholar 

  48. Blaya JA, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assst drop-foot gait. IEEE Trans Neural Sys Rehabil Eng 12:24–31. https://doi.org/10.1109/TNSRE.2003.823266

    Article  Google Scholar 

  49. Morshed A, Imtiaz AC, Azuddin BM (2014) Mechanism and design analysis of articulated ankle foot orthoses for drop-foot. Sci World J 2014:14. Article ID: 867869. https://doi.org/10.1155/2014/867869

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramani Kanagaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, D., Jaiswal, V., Kanagaraj, S. (2019). Biomaterials for Biomedical Devices and Implants. In: Katiyar, V., Gupta, R., Ghosh, T. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-32-9804-0_5

Download citation

Publish with us

Policies and ethics