Skip to main content

Sustainable Livestock Farming for Zero Hunger

  • Chapter
  • First Online:

Abstract

Sustainability in livestock farming is a highly challengeable task in the face of climate change. In a sustainable farming system, it is expected to keep the continuity in practising of farming throughout a year by introducing autonomy in management of farming system, even under adverse climatic changes or non-availability of feedstock from other sources. In sustainable farming system, the needs of one element are met by the wastes of another component. For example, animal manure builds the soil, replenishing nutrient used by crops that are fed to animals. Livestock farming can be fully autonomous by linking the farmhouse with a polyhouse or greenhouse where variety of feedstock can be developed, even unaffordable climatic conditions (Fig. 6.1). The same way independent from conventional energy, goat manure-based biogas generating system can be developed for fulfilling the energy need of a livestock farmhouse.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Raman S (2006) Agricultural sustainability: principles, processes, and prospects. Food Products Press, an imprint of The Haworth Press, Binghamton

    Google Scholar 

  2. FAO (2011) World livestock 2011 – livestock in food security. FAO, Rome

    Google Scholar 

  3. Reynolds MP, Hellin J, Govaerts B et al (2012) Global crop improvement networks to bridge technology gaps. J Exp Bot 63(1):1–12

    Article  CAS  PubMed  Google Scholar 

  4. Capper JL, Cady RA, Bauman DE (2009) The environmental impact of dairy production: 1944 compared with 2007. J Anim Sci 87:2160–2167

    Article  CAS  PubMed  Google Scholar 

  5. Capper JL (2011) The environmental impact of beef production in the United States: 1977 compared with 2007. J Anim Sci 89:4249–4261

    Article  CAS  PubMed  Google Scholar 

  6. Gill M, Smith P, Wilkinson JM (2010) Mitigating climate change: the role of domestic livestock. Animal 4:323–333

    Article  CAS  PubMed  Google Scholar 

  7. Wilkinson JM (2011) Re-defining efficiency of feed use by livestock. Animal 5:1014–1022

    Article  CAS  PubMed  Google Scholar 

  8. Gerber PJ, Vellinga TV, Steinfeld H (2010) Issues and options in addressing the environmental consequences of livestock sector’s growth. Meat Sci 84:244–247

    Article  CAS  PubMed  Google Scholar 

  9. Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  PubMed  Google Scholar 

  10. Sands M, McDowell RE (1978) The potential of the goat for milk production in the tropics. Cornell University, Department of Animal Science, Ithaca, International Agricultural Mimeo 60

    Google Scholar 

  11. Hillel D, Rosenzweig C (2008) Biodiversity and food production. In: Chivian E, Bernstein A (eds) Sustaining life: how human health depends on biodiversity. Oxford University Press, New York, pp 325–381

    Google Scholar 

  12. Kohn RA, Dinneen MM, Russek-Cohen E (2005) Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J Anim Sci 83:879–889

    Article  CAS  PubMed  Google Scholar 

  13. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: the physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, p 1535

    Google Scholar 

  14. Ellis JL, Bannink A, France J et al (2010) Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Glob Chang Biol 16:3246–3256

    Article  Google Scholar 

  15. Beauchemin KA, McAllister TA, McGinn SM (2009) Dietary mitigation of enteric methane from cattle. CAB Rev: Perspectives Agric Vet Sci Nutr Natur Resour 4:035

    Article  CAS  Google Scholar 

  16. Martin C, Morgavi DP, Moreau D (2010) Methane mitigation in ruminants: from microbe to the farm scale. Animal 4:351–365

    Article  CAS  PubMed  Google Scholar 

  17. Grainger C, Beauchemin KA (2011) Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Sci Technol 166–167:308–320

    Article  CAS  Google Scholar 

  18. Nolan JV, Hegarty RS, Hegarty J et al (2010) Effects of dietary nitrate on rumen fermentation, methane production and water kinetics in sheep. Anim Prod Sci 50:801–806

    Article  CAS  Google Scholar 

  19. Knapp JR, Laur GL, Vadas PA et al (2014) Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci 97:3231–3261

    Article  CAS  PubMed  Google Scholar 

  20. Hristov AN, Oh J, Firkins JL et al (2013) Mitigation of methane and nitrous oxide emissions from animal operations: I. a review of enteric methane mitigation options. J Anim Sci 11(91):5045–5069

    Article  Google Scholar 

  21. Eckard RJ, Grainger C, de Klein CAM (2010) Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest Sci 130:47–56

    Article  Google Scholar 

  22. Luo Y, Wei Z, Sun Q et al (2011) Effects of zeolite addition on ammonia volatilization in chicken manure composting. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 27:243–247

    CAS  Google Scholar 

  23. Gerber PJ, Steinfeld H, Henderson B et al (2013) Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  24. Williams A, Chatterton J, Hateley G et al (2015) A systems-life cycle assessment approach to modelling the impact of improvements in cattle health on greenhouse gas emissions. Adv Anim Biosci 6:29–31

    Article  Google Scholar 

  25. Steinfeld H, Gerber P, Wassenaar T et al (2006) Livestock’s long shadow: environmental issues and opinions. FAO, Rome

    Google Scholar 

  26. Goldewijk KK, Beusen A, Janssen P (2010) Long term dynamic modeling of global population and built-up area in a spatially explicit way, HYDE 3.1. The Holocene 20(4):565–573

    Article  Google Scholar 

  27. FAO (2014b) FAOSTAT. Online statistical database (retrieved November 2014) (available at http://faostat.fao.org)

  28. United Nations Department of Economic and Social Affairs/Population Division World Population Prospects: The 2010

    Google Scholar 

  29. FAO (2013c) Agribusiness public–private partnerships: a country report of Thailand. Rome

    Google Scholar 

  30. FAO, SOFA (2014) The State of Food and Agriculture 2014. Innovation in Family Farming. Rome

    Google Scholar 

  31. Nagayets O (2005) Small farms: current status and key trends. Prepared for the Future of Small Farms Research Workshop held in Wye, UK. June 26–29. Washington, D.C., IFPRI

    Google Scholar 

  32. FAO (2016) The state of food and agriculture 2016. Climate change, agriculture and food security. Rome

    Google Scholar 

  33. FAO (2013) 2000 world census of agriculture: analysis and international comparison of the results (1996–2005). FAO Statistical Development Series No. 13. Rome

    Google Scholar 

  34. FAO, SOFO (2018) State of the World’s Forests 2018. Forest pathways to Sustainable Development. Rome

    Google Scholar 

  35. FAO, SOFO (2012) State of the world’s forests 2012. Rome

    Google Scholar 

  36. Kennedy D (2013) Time to deal with antibiotics. Science 342:777

    Article  CAS  PubMed  Google Scholar 

  37. Van Boeckel TP, Brower C, Gilbert M et al (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112:5649–5654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Vishnuraj MR, Kandeepan G, Rao KH et al (2016) Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: a comprehensive review. Cogent Food Agric 2:1

    Google Scholar 

  39. Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Neill J (2015) Rapid diagnostics stopping the unnecessary use of antibiotics. http://www.sfam.org.uk/download.cfm?docid=1191C802-F9CA-4406- 8DA9ED9E3F7B2A7F. 2015.10. Accessed April 6, 2018

  41. Lim SJ, Seo CK, Kim TH et al (2013) Occurrence and ecological hazard assessment of selected veterinary medicines in livestock wastewater treatment plants. J Environ Sci Health B 48:658–670

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe N, Bergamaschi BA, Loftin KA et al (2010) Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ Sci Technol 44:6591–6600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu Y, Johnson TA, Su J et al (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (vas) in the environment. Chemosphere 65:725–759

    Article  CAS  PubMed  Google Scholar 

  45. Underwood JC, Harvey RW, Metge DW et al (2011) Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ Sci Technol 45:3096–3101

    Article  CAS  PubMed  Google Scholar 

  46. Jia S, Zhang XX, Miao Y et al (2017) Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. Water Res 124:259–268

    Article  CAS  PubMed  Google Scholar 

  47. Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  PubMed  Google Scholar 

  48. Environmental Agency (2005) Targeted monitoring study for veterinary medicines in the UK environment. Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, BS32 4UD. https://www.gov. uk/government/uploads/system/uploads/attachment_data/file/290533/ scho0806blhh-e-e.pdf. Accessed March 13, 2014

  49. Stokestad ELR, Jukes TH (1950) Further observations on the “animal protein factor”. Proc Soc Exp Biol Med 73:523–528

    Article  Google Scholar 

  50. Gorbach SL (2001) Antimicrobial use in animal feed—time to stop. N Engl J Med 345:1202–1203

    Article  CAS  PubMed  Google Scholar 

  51. Howells CH, Joynson DH (1975) Possible role of animal feeding stuffs in spread of antibiotic-resistant intestinal coliforms. Lancet:156–157

    Google Scholar 

  52. Levy SB (2002) The antibiotic paradox: how the misuse of antibiotics destroys their curative powers, 2nd edn. Perseus Publishing, Cambridge, MA

    Google Scholar 

  53. Smith HW, Crabb WE (1957) The effect of the continuous administration of diets containing low levels of tetracyclines on the incidence of drug-resistant Bacterium coli in the faeces of pigs and chickens: the sensitivity of the Bact. coli to other chemotherapeutic agents. Vet Rec 69:24–30

    Google Scholar 

  54. Levy SB, FitzGerald GB, Macone AB (1976) Spread of antibiotic resistant plasmids from chicken to chicken and from chicken to man. Nature 260:40–42

    Article  CAS  PubMed  Google Scholar 

  55. Hershberger E, Oprea SF, Donabedian SM et al (2005) Epidemiology of antimicrobial resistance in enterococci of animal origin. J Antimicrob Chemother 55:127–130

    Article  CAS  PubMed  Google Scholar 

  56. Witte W (2000) Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents 16(Suppl. 1):S19–S24

    Article  CAS  PubMed  Google Scholar 

  57. Shanahan F, van Sinderen D, O’Toole PW et al (2017) Feeding the microbiota: transducer of nutrient signals for the host. Gut 66:1709–1717

    Article  CAS  PubMed  Google Scholar 

  58. De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics and synbiotics. In: Stahl U, UEB D, Nevoigt E (eds) Food biotechnology, advances in biochemical engineering/biotechnology. Springer, Berlin, pp 1–66

    Google Scholar 

  59. Kuo SM (2013) The interplay between fiber and the intestinal microbiome in the inflammatory response. Adv Nutr 4(1):16–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in Bifidobacteria. Genes Nutr 6(3):285–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peña AS (2007) Intestinal flora, probiotics, prebiotics, synbiotics and novel foods. Revista Espanola de Enfermedades Digestivas 99(11):653

    PubMed  Google Scholar 

  62. Gibson RG, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Appl Bacteriol 125(6):1401–1412

    CAS  Google Scholar 

  63. Cencic A, Chingwaru W (2010) The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2(6):611–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rioux KP, Madsen KL, Fedorak RN (2005) The role of enteric microflora in inflammatory bowel disease: human and animal studies with probiotics and prebiotics. Gastroenterol Clin N Am 34:465–482

    Article  Google Scholar 

  65. Blay GL, Michel C, Blottiere HM et al (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. J Nutr 129(12):2231–2235

    Article  PubMed  Google Scholar 

  66. Gibson GR (2003) Prebiotics. Best Pract Res Clin Gastroenterol 18:287–298

    Google Scholar 

  67. Bengmark S (2005) Bioecological control of the gastrointestinal tract: the role of flora and supplemented probiotics and synbiotics. Gastroenterol Clin N Am 34:413–436

    Article  Google Scholar 

  68. Panesar PS, Kaur G, Panesar R et al (2009) Synbiotics: potential dietary supplements in functional foods. Food Science Central

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, B.K., Rout, P.K., Behera, S. (2019). Sustainable Livestock Farming for Zero Hunger. In: Move Towards Zero Hunger. Springer, Singapore. https://doi.org/10.1007/978-981-32-9800-2_6

Download citation

Publish with us

Policies and ethics