Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 454 Accesses

Abstract

Chirality of matter can produce unique responses in optics, electricity and magnetism. In particular, magnetic crystals transmit their handedness to the magnetism via antisymmetric exchange interaction of relativistic origin, producing helical spin orders as well as their fluctuations. In this chapter, we report that chiral spin fluctuations manifest themselves in the electrical magnetochiral effect, i.e. the nonreciprocal and nonlinear response characterized by the electrical resistance depending on inner product of current and magnetic field. Prominent electrical magnetochiral signals emerge at specific temperature-magnetic field-pressure regions: in the paramagnetic phase just above the helical ordering temperature and in the partially-ordered topological spin state at low temperatures and high pressures, where thermal and quantum spin fluctuations are conspicuous in proximity of classical and quantum phase transitions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moriya T, Ueda K (2000) Adv Phys 49:555

    Article  ADS  Google Scholar 

  2. Löhneysen HV, Rosch A, Vojta M, Wölfle P (2007) Rev Mod Phys 79:1015

    Google Scholar 

  3. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P (2009) Phys Rev Lett 102:186602

    Article  ADS  Google Scholar 

  4. Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N, Tokura Y (2001) Science 291:2573

    Article  ADS  Google Scholar 

  5. Rikken GLJA, Fölling J, Wyder P (2001) Phys Rev Lett 87:236602

    Google Scholar 

  6. Pop F, Auban-Senzier P, Canadell E, Rikken GLJA, Avarvari N (2014) Nat Commun 5:3757

    Google Scholar 

  7. Avci CO, Garello K, Ghosh A, Gabureac M, Alvarado SF, Gambardella P (2015) Nat Phys 11:570

    Google Scholar 

  8. Kim KJ, Moriyama T, Koyama T, Chiba D, Lee SW, Lee SJ, Lee KJ, Lee HW, Ono T (2016) arXiv:1603.08746

  9. Yasuda K, Tsukazaki A, Yoshimi R, Takahashi KS, Kawasaki M, Tokura Y (2016) Phys Rev Lett 117:127202

    Article  ADS  Google Scholar 

  10. Ishikawa Y, Tajima K, Bloch D, Roth M (1976) Solid State Commun 19:525

    Article  ADS  Google Scholar 

  11. Mühlbauer S, Binz B, Jonietz F, Pleiderer C, Rosch A, Neubauer A, Georgii R, Böni P (2009) Science 323:915

    Article  ADS  Google Scholar 

  12. Shirane G, Cowley R, Majkrzak C, Sokoloff JB, Pagonis B, Perry CH, Ishikawa Y (1983) Phys Rev B 28:6251

    Article  ADS  Google Scholar 

  13. Grigoriev SV, Maleyev SV, Okorokov AI, Chetverikov YuO, Georgii R, Böni P, Lamago D, Eckerlebe H, Pranzas K (2005) Phys Rev B 72:134420

    Article  ADS  Google Scholar 

  14. Pappas C, Lelièvre-Berna E, Falus P, Bentley PM, Moskvin E, Grigoriev S, Fouquet P, Farago B (2009) Phys Rev Lett 102:197202

    Article  ADS  Google Scholar 

  15. Grigoriev SV, Maleyev SV, Moskvin EV, Dyadkin VA, Fouquet P, Eckerlebe H (2010) Phys Rev B 81:144413

    Article  ADS  Google Scholar 

  16. Kawamura H (1998) J Phys: Condens Matter 10:4707

    ADS  Google Scholar 

  17. Pfleiderer C, Reznik D, Pintschovius L, Löhneysen HV, Garst M, Rosch A (2004) Nature 427:227

    Article  ADS  Google Scholar 

  18. Uemura YJ, Goko T, Gat-Malureanu IM, Carlo JP, Russo PL, Savici AT, Aczel A, MacDougall GJ, Rodriguez JA, Luke GM, Dunsiger SR, McCollam A, Arai J, Pfleiderer Ch, Böni P, Yoshimura K, Baggio-Saitovitch E, Fontes MB, Larrea J, Sushko YV, Sereni J (2007) Nat Phys 3:29

    Article  Google Scholar 

  19. Ritz R, Halder M, Wagner M, Franz C, Bauer A, Pfleiderer C (2013) Nature 497:231

    Article  ADS  Google Scholar 

  20. Yokouchi T, Kanazawa N, Kikkawa A, Morikawa D, Shibata K, Arima T, Taguchi Y, Kagawa F, Tokura Y (2017) Nat Commun 8:866

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Yokouchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yokouchi, T. (2019). Electrical Magnetochiral Effect in MnSi. In: Magneto-transport Properties of Skyrmions and Chiral Spin Structures in MnSi. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9385-4_4

Download citation

Publish with us

Policies and ethics