Skip to main content

Reactive Oxygen Species: Friends or Foes of Lung Cancer?

  • Chapter
  • First Online:

Abstract

Reactive oxygen species (ROS) are important biological radicals essential for determining different stages and phenotypes of cells from quiescence to proliferation, differentiation, self-renewal and even apoptosis. Low ROS favours quiescence and self-renewal in contrast to high ROS that dictates proliferation, differentiation or apoptosis. Such wide variety of cell fates depends upon specific signalling pathways that regulate the cellular ROS, thus contributing to tissue homeostasis. Imbalance of ROS causes several pathological conditions including cancer which is associated with higher level of ROS that supports tumour development and progression. However, to restrain from the excessive oxidative damage of ROS, cancer cells efficiently control the antioxidative pathways, thus favouring its own survival and maintenance at the same time. Furthermore, importance of ROS has been an active field of research in ‘cancer stem cells’ (CSCs), a subpopulation of cancer cells with stem cell-like properties and features. CSCs possess low ROS level that make them resistant to the existing chemotherapy or radiotherapy that ultimately leads to cancer recurrence. Though several evidences have proved the role of ROS in self-renewal and stemness of CSCs, there is a lot to explore about ROS-regulated signalling mechanisms in CSCs. An understanding of ROS regulation in CSCs can provide an idea about the application of oxidative stress as a therapeutic strategy in treatment of cancer. In this book chapter, we have raised the debate as to whether ROS acts as ‘friend or foe’ for cancer cells. Moreover, exploring the significance of ROS and redox regulation in lung cancer stem cells has been our major focus. Finally, it is suggested that in order to get an effective treatment and recurrence-free survival, sensitization of the cancer stem cells to high ROS environment is a must.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Giannoni E, Buricchi F, Raugei G et al (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25(15):6391–6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157(4):897–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoeijmakers JHJ (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485

    Article  CAS  PubMed  Google Scholar 

  4. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824

    Article  PubMed  CAS  Google Scholar 

  5. Fruehauf JP, Meyskens FL (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13(3):789–794

    Article  CAS  PubMed  Google Scholar 

  6. Mohanty S, Saha S, Hossain DMS et al (2014) ROS-PIASγ cross talk channelizes ATM signaling from resistance to apoptosis during chemosensitization of resistant tumors. Cell Death Dis 5(1):e1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chakraborti S, Chakraborty S, Saha S et al (2017) PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radic Biol Med 103:35–47

    Article  CAS  PubMed  Google Scholar 

  8. Ambrosone CB (2000) Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2(4):903–917

    Article  CAS  PubMed  Google Scholar 

  9. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798

    CAS  PubMed  Google Scholar 

  10. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11

    Article  CAS  PubMed  Google Scholar 

  11. Ramsey MR, Sharpless NE (2006) ROS as a tumour suppressor? Nat Cell Biol 8(11):1213–1215

    Article  CAS  PubMed  Google Scholar 

  12. Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96(9):2181–2196

    Article  CAS  PubMed  Google Scholar 

  13. Toler SM, Noe D, Sharma A (2006) Selective enhancement of cellular oxidative stress by chloroquine: implications for the treatment of glioblastoma multiforme. Neurosurg Focus 21(6):E10

    Article  PubMed  Google Scholar 

  14. Nguyen LV, Vanner R, Dirks P et al (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–143

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227(2):421–430

    Article  CAS  PubMed  Google Scholar 

  16. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    Article  CAS  PubMed  Google Scholar 

  18. Dave B, Mittal V, Tan NM, Chang JC (2012) Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res BCR 14(1):202

    Article  PubMed  Google Scholar 

  19. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845

    Article  CAS  PubMed  Google Scholar 

  20. Kurtova AV, Xiao J, Mo Q et al (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517(7533):209–213

    Article  CAS  PubMed  Google Scholar 

  21. Doherty MR, Smigiel JM, Junk DJ, Jackson MW (2016) Cancer stem cell plasticity drives therapeutic resistance. Cancers (Basel) 8(1):pii: E8

    Article  CAS  Google Scholar 

  22. Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4):583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim HM, Haraguchi N, Ishii H et al (2012) Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon. Ann Surg Oncol 19(Suppl 3):S539–S548

    Article  PubMed  Google Scholar 

  24. Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 464(7291):993–998

    Article  CAS  PubMed  Google Scholar 

  25. Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ambudkar SV, Dey S, Hrycyna CA et al (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  CAS  PubMed  Google Scholar 

  27. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22(47):7369–7375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eastman A, Schulte N (1988) Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II). Biochemistry 27(13):4730–4734

    Article  CAS  PubMed  Google Scholar 

  29. Kavallaris M, Kuo DY, Burkhart CA et al (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100(5):1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sethi T, Rintoul RC, Moore SM et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5(6):662–668

    Article  CAS  PubMed  Google Scholar 

  31. Park HS, Kim SR, Lee YC (2009) Impact of oxidative stress on lung diseases. Respirol Carlton Vic 14(1):27–38

    Article  Google Scholar 

  32. Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122(3):456–468; quiz 469–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11(1):1–15

    Article  CAS  PubMed  Google Scholar 

  34. Zhou D, Shao L, Spitz DR (2014) Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res 122:1–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Storz P, Döppler H, Toker A (2004) Protein kinase Cdelta selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol Cell Biol 24(7):2614–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petros JA, Baumann AK, Ruiz-Pesini E et al (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A 102(3):719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Masri F (2010) Role of nitric oxide and its metabolites as potential markers in lung cancer. Ann Thorac Med 5(3):123–127

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102(13):4783–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Juntilla MM, Patil VD, Calamito M et al (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115(20):4030–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kinder M, Wei C, Shelat SG et al (2010) Hematopoietic stem cell function requires 12/15-lipoxygenase-dependent fatty acid metabolism. Blood 115(24):5012–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lewandowski JP, Sheehan KB, Bennett PE, Boswell RE (2010) Mago Nashi, Tsunagi/Y14 and Ranshi form a complex that influences oocyte differentiation in Drosophila melanogaster. Dev Biol 339(2):307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461(7263):537–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sauer H, Wartenberg M (2005) Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 7(11–12):1423–1434

    Article  CAS  PubMed  Google Scholar 

  45. Chen C, Liu Y, Liu R et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205(10):2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyamoto K, Araki KY, Naka K et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1(1):101–112

    Article  CAS  PubMed  Google Scholar 

  47. Tothova Z, Kollipara R, Huntly BJ et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339

    Article  CAS  PubMed  Google Scholar 

  48. Shao L, Wu L, Zhou D (2012) Sensitization of tumor cells to cancer therapy by molecularly targeted inhibition of the inhibitor of nuclear factor κB kinase. Transl Cancer Res 1(2):100–108

    PubMed  Google Scholar 

  49. Shao L, Sun Y, Zhang Z et al (2010) Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation. Blood 115(23):4707–4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu H, Shen H, Yuan Y et al (2010) Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation. Blood 115(17):3472–3480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ji A-R, Ku S-Y, Cho MS et al (2010) Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med 42(3):175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmelter M, Ateghang B, Helmig S et al (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20(8):1182–1184

    Article  CAS  PubMed  Google Scholar 

  53. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  54. van der Vliet A (2008) NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med 44(6):938–955

    Article  CAS  PubMed  Google Scholar 

  55. Zhang C, Lan T, Hou J et al (2014) NOX4 promotes non-small cell lung cancer cell proliferation and metastasis through positive feedback regulation of PI3K/Akt signaling. Oncotarget 5(12):4392–4405

    Article  PubMed  PubMed Central  Google Scholar 

  56. Boudreau HE, Casterline BW, Burke DJ, Leto TL (2014) Wild-type and mutant p53 differentially regulate NADPH oxidase 4 in TGF-β-mediated migration of human lung and breast epithelial cells. Br J Cancer 110(10):2569–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fischer H (2009) Mechanisms and function of DUOX in epithelia of the lung. Antioxid Redox Signal 11(10):2453–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luxen S, Belinsky SA, Knaus UG (2008) Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res 68(4):1037–1045

    Article  CAS  PubMed  Google Scholar 

  59. Colavitti R, Pani G, Bedogni B et al (2002) Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J Biol Chem 277(5):3101–3108

    Article  CAS  PubMed  Google Scholar 

  60. Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476(1–2):52–54

    Article  CAS  PubMed  Google Scholar 

  61. Chiarugi P, Fiaschi T (2007) Redox signalling in anchorage-dependent cell growth. Cell Signal 19(4):672–682

    Article  CAS  PubMed  Google Scholar 

  62. Rhee SG, Bae YS, Lee SR, Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE Signal Transduct Knowl Environ 2000(53):pe1

    CAS  Google Scholar 

  63. Irani K, Xia Y, Zweier JL et al (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275(5306):1649–1652

    Article  CAS  PubMed  Google Scholar 

  64. Reddy KB, Glaros S (2007) Inhibition of the MAP kinase activity suppresses estrogen-induced breast tumor growth both in vitro and in vivo. Int J Oncol 30(4):971–975

    CAS  PubMed  Google Scholar 

  65. Lander HM, Hajjar DP, Hempstead BL et al (1997) A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272(7):4323–4326

    Article  CAS  PubMed  Google Scholar 

  66. Chan DW, Liu VWS, Tsao GSW et al (2008) Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29(9):1742–1750

    Article  CAS  PubMed  Google Scholar 

  67. McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    Article  CAS  PubMed  Google Scholar 

  68. Steelman LS, Abrams SL, Whelan J et al (2008) Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22(4):686–707

    Article  CAS  PubMed  Google Scholar 

  69. Lee WC, Choi CH, Cha SH, Oh HL, Kim YK (2005) Role of ERK in hydrogen peroxide-induced cell death of human glioma cells. Neurochem Res 30(2):263–270

    Article  CAS  PubMed  Google Scholar 

  70. Rygiel TP, Mertens AE, Strumane K et al (2008) The Rac activator Tiam1 prevents keratinocyte apoptosis by controlling ROS-mediated ERK phosphorylation. J Cell Sci 121(Pt 8):1183–1192

    Article  CAS  PubMed  Google Scholar 

  71. Ostrakhovitch EA, Cherian MG (2005) Inhibition of extracellular signal regulated kinase (ERK) leads to apoptosis inducing factor (AIF) mediated apoptosis in epithelial breast cancer cells: the lack of effect of ERK in p53 mediated copper induced apoptosis. J Cell Biochem 95(6):1120–1134

    Article  CAS  PubMed  Google Scholar 

  72. Zhou J, Chen Y, Lang J-Y (2008) Salvicine inactivates beta 1 integrin and inhibits adhesion of MDA-MB-435 cells to fibronectin via reactive oxygen species signaling. Mol Cancer Res MCR 6(2):194–204

    Article  PubMed  CAS  Google Scholar 

  73. Lewis A, Du J, Liu J, Ritchie JM, Oberley LW, Cullen JJ (2005) Metastatic progression of pancreatic cancer: changes in antioxidant enzymes and cell growth. Clin Exp Metastasis 22(7):523–532

    Article  CAS  PubMed  Google Scholar 

  74. Mazzio EA, Soliman KFA (2004) Glioma cell antioxidant capacity relative to reactive oxygen species produced by dopamine. J Appl Toxicol JAT 24(2):99–106

    Article  CAS  PubMed  Google Scholar 

  75. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  76. Pastorino JG, Tafani M, Farber JL (1999) Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway. J Biol Chem 274(27):19411–19416

    Article  CAS  PubMed  Google Scholar 

  77. Burdick AD, Davis JW, Liu KJ et al (2003) Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res 63(22):7825–7833

    CAS  PubMed  Google Scholar 

  78. Park S-A, Na H-K, Kim E-H et al (2009) 4-hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of IkappaB kinase: potential role of reactive oxygen species. Cancer Res 69(6):2416–2424

    Article  CAS  PubMed  Google Scholar 

  79. Liu L-Z, Hu X-W, Xia C et al (2006) Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 41(10):1521–1533

    Article  CAS  PubMed  Google Scholar 

  80. Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13(10):1137–1143

    Article  CAS  PubMed  Google Scholar 

  81. Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17(4):221–237

    Article  CAS  PubMed  Google Scholar 

  82. Wang Y, Huang X, Cang H et al (2007) The endogenous reactive oxygen species promote NF-kappaB activation by targeting on activation of NF-kappaB-inducing kinase in oral squamous carcinoma cells. Free Radic Res 41(9):963–971

    Article  CAS  PubMed  Google Scholar 

  83. Storz P, Toker A (2003) Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO J 22(1):109–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cowell CF, Döppler H, Yan IK et al (2009) Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling. J Cell Sci 122(Pt 7):919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Döppler H, Storz P (2007) A novel tyrosine phosphorylation site in protein kinase D contributes to oxidative stress-mediated activation. J Biol Chem 282(44):31873–31881

    Article  PubMed  CAS  Google Scholar 

  86. Storz P, Döppler H, Toker A (2004) Activation loop phosphorylation controls protein kinase D-dependent activation of nuclear factor kappaB. Mol Pharmacol 66(4):870–879

    Article  CAS  PubMed  Google Scholar 

  87. Antonicelli F, Parmentier M, Drost EM et al (2002) Nacystelyn inhibits oxidant-mediated interleukin-8 expression and NF-kappaB nuclear binding in alveolar epithelial cells. Free Radic Biol Med 32(6):492–502

    Article  CAS  PubMed  Google Scholar 

  88. Goudar RK, Vlahovic G (2008) Hypoxia, angiogenesis, and lung cancer. Curr Oncol Rep 10(4):277–282

    Article  CAS  PubMed  Google Scholar 

  89. Cho KH, Choi MJ, Jeong KJ et al (2014) A ROS/STAT3/HIF-1α signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion. The Prostate 74(5):528–536

    Article  CAS  PubMed  Google Scholar 

  90. Zhao T, Zhu Y, Morinibu A et al (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 4:3793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Sarsour EH, Venkataraman S, Kalen AL et al (2008) Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 7(3):405–417

    Article  CAS  PubMed  Google Scholar 

  92. Felty Q, Singh KP, Roy D (2005) Estrogen-induced G1/S transition of G0-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene 24(31):4883–4893

    Article  CAS  PubMed  Google Scholar 

  93. Menon SG, Coleman MC, Walsh SA et al (2005) Differential susceptibility of nonmalignant human breast epithelial cells and breast cancer cells to thiol antioxidant-induced G(1)-delay. Antioxid Redox Signal 7(5–6):711–718

    Article  CAS  PubMed  Google Scholar 

  94. Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD et al (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674(1–2):109–115

    Article  CAS  PubMed  Google Scholar 

  95. Cullen JJ, Weydert C, Hinkhouse MM et al (2003) The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res 63(6):1297–1303

    CAS  PubMed  Google Scholar 

  96. Browne SE, Roberts LJ, Dennery PA et al (2004) Treatment with a catalytic antioxidant corrects the neurobehavioral defect in ataxia-telangiectasia mice. Free Radic Biol Med 36(7):938–942

    Article  CAS  PubMed  Google Scholar 

  97. Reichenbach J, Schubert R, Schindler D et al (2002) Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal 4(3):465–469

    Article  CAS  PubMed  Google Scholar 

  98. Pelicano H, Lu W, Zhou Y et al (2009) Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res 69(6):2375–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chiarugi P (2008) From anchorage dependent proliferation to survival: lessons from redox signalling. IUBMB Life 60(5):301–307

    Article  CAS  PubMed  Google Scholar 

  100. Taddei ML, Parri M, Mello T et al (2007) Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxid Redox Signal 9(4):469–481

    Article  CAS  PubMed  Google Scholar 

  101. Broom OJ, Massoumi R, Sjölander A (2006) Alpha2beta1 integrin signalling enhances cyclooxygenase-2 expression in intestinal epithelial cells. J Cell Physiol 209(3):950–958

    Article  CAS  PubMed  Google Scholar 

  102. Svineng G, Ravuri C, Rikardsen O et al (2008) The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 49(3):197–202

    Article  CAS  PubMed  Google Scholar 

  103. Werner E, Werb Z (2002) Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158(2):357–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Giannoni E, Fiaschi T, Ramponi G, Chiarugi P (2009) Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals. Oncogene 28(20):2074–2086

    Article  CAS  PubMed  Google Scholar 

  105. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25(1–2):17–26

    Article  CAS  PubMed  Google Scholar 

  106. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis Int J Program Cell Death 5(5):415–418

    Article  CAS  Google Scholar 

  107. Chung YM, Bae YS, Lee SY (2003) Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic Biol Med 34(4):434–442

    Article  CAS  PubMed  Google Scholar 

  108. Storz P (2007) Mitochondrial ROS--radical detoxification, mediated by protein kinase D. Trends Cell Biol 17(1):13–18

    Article  CAS  PubMed  Google Scholar 

  109. Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Takeda K, Matsuzawa A, Nishitoh H, Ichijo H (2003) Roles of MAPKKK ASK1 in stress-induced cell death. Cell Struct Funct 28(1):23–29

    Article  CAS  PubMed  Google Scholar 

  111. You H, Yamamoto K, Mak TW (2006) Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc Natl Acad Sci U S A 103(24):9051–9056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schulze-Osthoff K, Beyaert R, Vandevoorde V et al (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12(8):3095–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xu YC, Wu RF, Gu Y et al (2002) Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase. J Biol Chem 277(31):28051–28057

    Article  CAS  PubMed  Google Scholar 

  114. Leon G, MacDonagh L, Finn SP et al (2016) Cancer stem cells in drug resistant lung cancer: targeting cell surface markers and signaling pathways. Pharmacol Ther 158:71–90

    Article  CAS  PubMed  Google Scholar 

  115. MacDonagh L, Gray SG, Breen E et al (2016) Lung cancer stem cells: the root of resistance. Cancer Lett 372(2):147–156

    Article  CAS  PubMed  Google Scholar 

  116. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833

    Article  CAS  PubMed  Google Scholar 

  117. Jiang F, Qiu Q, Khanna A et al (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res MCR 7(3):330–338

    Article  CAS  PubMed  Google Scholar 

  118. Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514

    Article  CAS  PubMed  Google Scholar 

  119. Yan X, Luo H, Zhou X et al (2013) Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncol Rep 30(6):2733–2740

    Article  CAS  PubMed  Google Scholar 

  120. Tian C, Huang D, Yu Y et al (2017) ABCG1 as a potential oncogene in lung cancer. Exp Ther Med 13(6):3189–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dai Y, Liu S, Zhang W-Q et al (2017) YAP1 regulates ABCG2 and cancer cell side population in human lung cancer cells. Oncotarget 8(3):4096–4109

    Article  PubMed  Google Scholar 

  122. Nie S, Huang Y, Shi M et al (2018) Protective role of ABCG2 against oxidative stress in colorectal cancer and its potential underlying mechanism. Oncol Rep 40(4):2137–2146

    CAS  PubMed  Google Scholar 

  123. Yu W-K, Wang Z, Fong C-C et al (2017) Chemoresistant lung cancer stem cells display high DNA repair capability to remove cisplatin-induced DNA damage. Br J Pharmacol 174(4):302–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zeuner A, Francescangeli F, Contavalli P et al (2014) Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer. Cell Death Differ 21(12):1877–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Singh S, Bora-Singhal N, Kroeger J et al (2013) βArrestin-1 and Mcl-1 modulate self-renewal growth of cancer stem-like side-population cells in non-small cell lung cancer. PLoS ONE 8(2):e55982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chong SJF, Low ICC, Pervaiz S (2014) Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion 19(Pt A):39–48

    Article  CAS  PubMed  Google Scholar 

  127. Wang K, Zhang T, Dong Q et al (2013) Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis 4:e537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dong C, Yuan T, Wu Y et al (2013) Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23(3):316–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fang L, Zhu Q, Neuenschwander M et al (2016) A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res 76(4):891–901

    Article  CAS  PubMed  Google Scholar 

  130. Schieber MS, Chandel NS (2013) ROS links glucose metabolism to breast cancer stem cell and EMT phenotype. Cancer Cell 23(3):265–267

    Article  CAS  PubMed  Google Scholar 

  131. Mut-Salud N, Álvarez PJ, Garrido JM, Carrasco E, Aránega A, Rodríguez-Serrano F (2016) Antioxidant intake and antitumor therapy: toward nutritional recommendations for optimal results. Oxid Med Cell Longev 2016:6719534

    Article  PubMed  CAS  Google Scholar 

  132. Ogasawara MA, Zhang H (2009) Redox regulation and its emerging roles in stem cells and stem-like cancer cells. Antioxid Redox Signal 11(5):1107–1122

    Article  CAS  PubMed  Google Scholar 

  133. Dey-Guha I, Wolfer A, Yeh AC, Albeck J, Darp R, Leon E et al (2011) Asymmetric cancer cell division regulated by AKT. Proc Natl Acad Sci U S A 108(31):12845–12850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lan D, Wang L (2018) He R, et al Exogenous glutathione contributes to cisplatin resistance in lung cancer A549 cells. Am J Transl Res 10(5):1295–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Nagano O, Okazaki S, Saya H (2013) Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 32(44):5191–5198

    Article  CAS  PubMed  Google Scholar 

  136. Kwon T, Bak Y, Park Y-H et al (2016) Peroxiredoxin II is essential for maintaining stemness by redox regulation in liver cancer cells. Stem Cells Dayt Ohio 34(5):1188–1197

    Article  CAS  Google Scholar 

  137. Chandimali N, Jeong DK, Kwon T (2018) Peroxiredoxin II regulates cancer stem cells and stemness-associated properties of cancers. Cancers 10(9):305

    Article  PubMed Central  CAS  Google Scholar 

  138. Soini Y, Kinnula VL (2012) High association of peroxiredoxins with lung cancer. Lung Cancer Amst Neth 78(2):167

    Article  Google Scholar 

  139. Chandimali N, Huynh DL, Zhang JJ, Lee JC, Yu D-Y, Jeong DK et al (2018) MicroRNA-122 negatively associates with peroxiredoxin-II expression in human gefitinib-resistant lung cancer stem cells. Cancer Gene Ther 19

    Google Scholar 

  140. Lee KW, Lee DJ, Lee JY, Kang DH, Kwon J, Kang SW (2011) Peroxiredoxin II restrains DNA damage-induced death in cancer cells by positively regulating JNK-dependent DNA repair. J Biol Chem 286(10):8394–8404

    Article  CAS  PubMed  Google Scholar 

  141. Soini Y, Kahlos K (2001) Näpänkangas U, et al Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin Cancer Res 7(6):1750–1757

    CAS  PubMed  Google Scholar 

  142. Cho H-Y, Reddy SP, Kleeberger SR (2006) Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8(1–2):76–87

    Article  CAS  PubMed  Google Scholar 

  143. Ohta T, Iijima K, Miyamoto M et al (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68(5):1303–1309

    Article  CAS  PubMed  Google Scholar 

  144. Ryoo I, Lee S, Kwak M-K (2016) Redox modulating NRF2: a potential mediator of cancer stem cell resistance. Oxid Med Cell Longev 2016:2428153

    Article  PubMed  CAS  Google Scholar 

  145. Morgan MJ, Liu Z (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115

    Article  CAS  PubMed  Google Scholar 

  146. Park HJ, Carr JR, Wang Z et al (2009) FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J 28(19):2908–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang DK, Son CH, Lee SK et al (2009) Forkhead box M1 expression in pulmonary squamous cell carcinoma: correlation with clinicopathologic features and its prognostic significance. Hum Pathol 40(4):464–470

    Article  CAS  PubMed  Google Scholar 

  148. Kwok CTD, Leung MH, Qin J et al (2016) The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells. Stem Cell Res 16(3):651–661

    Article  CAS  PubMed  Google Scholar 

  149. Fu Z, Cao X, Yang Y et al (2018) Upregulation of FoxM1 by MnSOD overexpression contributes to cancer stem-like cell characteristics in the lung cancer H460 cell line. Technol Cancer Res Treat 17:1533033818789635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Jeannot V, Mazzaferro S, Lavaud J et al (2016) Targeting CD44 receptor-positive lung tumors using polysaccharide-based nanocarriers: Influence of nanoparticle size and administration route. Nanomedicine Nanotechnol Biol Med 12(4):921–932

    Article  CAS  Google Scholar 

  151. Benhar M, Shytaj IL, Stamler JS, Savarino A (2016) Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J Clin Invest 126(5):1630–1639

    Article  PubMed  PubMed Central  Google Scholar 

  152. Lagadinou ED, Sach A, Callahan K et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12(3):329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ren D, Villeneuve NF, Jiang T et al (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A 108(4):1433–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sun X, Wang Q, Wang Y, Du L, Xu C, Liu Q (2016) Brusatol enhances the radiosensitivity of A549 cells by promoting ROS production and enhancing DNA damage. Int J Mol Sci 17(7):997

    Article  PubMed Central  CAS  Google Scholar 

  155. Zhang H, Mi J-Q, Fang H et al (2013) Preferential eradication of acute myelogenous leukemia stem cells by fenretinide. Proc Natl Acad Sci U S A 110(14):5606–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guha, D., Banerjee, S., Mukherjee, S., Dutta, A., Das, T. (2020). Reactive Oxygen Species: Friends or Foes of Lung Cancer?. In: Chakraborti, S., Parinandi, N., Ghosh, R., Ganguly, N., Chakraborti, T. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-32-9366-3_14

Download citation

Publish with us

Policies and ethics