Skip to main content

Crop Diversification and Food Security

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Food security is a primary concern and necessity of every nation, and crop diversification is a dynamic tool to ensure the food security in a sustainable way. Crop diversification includes both growing of conventional crops and introduction of new nonconventional crops. Crop diversification is also an efficient tool for mitigating the adverse effects of climate change. In this chapter, authors have discussed various disadvantages of mono-crop culture like disease infestation, abiotic stress, and negative environmental consequences and also discussed how these consequences can be mitigated with crop diversification. Besides all these advantages, in a narrow scope, risk avoidance, land suitability, social norms, income level, and contact with extension officers are key challenges which hinder wide adaptation of crop diversification. Acceptance of new crops in the market is also a challenge. In this scenario, inclusion of oilseed crops and legume crops and the promotion of agroforestry system may be a viable option to adjust as new crops in already adopted cropping systems. But before adaptation of new crops, long-term experiments on the impact of crop diversification on soil properties, farmer income, food security, and global warming should be carried out to exclude the farmers’ risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MI, Karim MA (1989) The use of trap crop in manipulating population of the cotton jassid on cotton. Bangladesh J Zool 17:159–164

    Google Scholar 

  • Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2(1):35–42

    Article  Google Scholar 

  • Altieri MA, Bravo E (2007) The ecological and social tragedy of crop-based biofuel production in the Americas. Retrieved March 27, 2009, from http://www.foodfirst.org/en/node/1662

  • Andow D (1983) The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agric Ecosyst Environ 9:25–35

    Article  Google Scholar 

  • Angus JF, Kirkegaard JA, Hunt JR, Ryan MH, Ohlander L, Peoples MB (2015) Break crops and rotations for wheat. Crop Pasture Sci 66:523–552

    Article  Google Scholar 

  • Armbrecht I, Gallego MC (2007) Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomol Exp Appl 124:261–267

    Article  Google Scholar 

  • Ayoub AT (1999) Fertilizers and the environment. Nutr Cycl Agroecosyst 55(2):117–121

    Article  Google Scholar 

  • Bale JS, Van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos Trans R Soc B: Biol Sci 363(1492):761–776

    Article  CAS  Google Scholar 

  • Banik P, Midya A, Sarkar BK, Ghose SS (2006) Wheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. Eur J Agron 24:325–332

    Article  Google Scholar 

  • Baumgartner S, Quaas MF (2010) Managing increasing environmental risks through agrobiodiversity and agrienvironmental policies. Agric Econ 41(5):483–496

    Article  Google Scholar 

  • Beckie HJ, Hall LM, Meers S, Laslo JJ, Stevenson FC (2004) Management practices influencing herbicide resistance in wild oat. Weed Technol 18(3):853–859

    Article  Google Scholar 

  • Behera UK, Sharma AR, Mahapatra IC (2007) Crop diversification for efficient resource management in India: problems, prospects and policy. J Sustain Agri 30:97–127

    Article  Google Scholar 

  • Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev 87:52–71

    Article  PubMed  Google Scholar 

  • Benson GO (1985) Why the reduced yields when corn follows corn and possible management responses? Proceedingd of Corn Sorghum Research Conference, Chicago, pp 161–174

    Google Scholar 

  • Blackshaw RE (1993) Downy brome (Bromus tectorum) density and relative time of emergence affects interference in winter wheat (Triticum aestivum). Weed Sci 41(4):551–556

    Article  Google Scholar 

  • Bradshaw B, Dolan H, Smit B (2004) Farm-level adaptation to climatic variability and change: crop diversification in the Canadian Prairies. Clim Chang 67(1):119–141

    Article  Google Scholar 

  • Brandsæter LO, Smeby T, Tronsmo AM, Netland J (2000) Winter annual legumes for use as cover crops in row crops in northern regions: II. frost resistance study. Crop Sci 40:175–181

    Article  Google Scholar 

  • Caamal-Maldonado JA, Jimenez-Osornio JJ, Torres-Barragán A, Anaya AL (2001) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93:27–36

    Article  Google Scholar 

  • Carroll C, Halpin M, Burger P, Bell K, Sallaway MM, Yule DF (1997) The effect of crop type, crop rotation, and tillage practice on runoff and soil loss on a vertisol in Central Queensland. Soil Res 35:925–940

    Article  Google Scholar 

  • Cernusko K, Boreky V (1992) The effect of fore crop, soil tillage and herbicide on weed infestation rate and on the winter wheat yield. Rostlinna Vyroba-UVTIZ 38:603–609

    Google Scholar 

  • Chalk PM (1998) Dynamics of biologically fixed N in legume-cereal rotations: a review. Aust J Agric Res 49:303–316

    Article  CAS  Google Scholar 

  • Chapin FS, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functioning of the ecosystem. Science 277:500–504

    Article  CAS  Google Scholar 

  • Clements R, Haggar J, Quezada A, Torres J (2011) Technologies for Climate Change Adaptation – agriculture sector. In: Zhu X (Ed) UNEP Risø Centre, Roskilde, 2011, available at http://tech-action.org

  • Cutforth LB, Francis CA, Lynne GD, Mortensen DA, Eskridge KM (2001) Factors affecting farmers’ crop diversity decisions: an integrated approach. Am J AlternAgric 16(4):168–176

    Google Scholar 

  • da Pinheiro B, da Castro E, Guimaraes CM (2006) Sustainability and profitability of aerobic rice production in Brazil. Field Crops Res 97:34–42

    Article  Google Scholar 

  • Dabney SM, McGawley EC, Boethel DJ, Berger DA (1988) Short-term crop rotation systems for soybean production. Agron J 80:197–204

    Article  Google Scholar 

  • Dalin P, Kindvall O, Björkman C (2009) Reduced population control of an insect pest in managed willow monocultures. PLoS One 4:e5487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Degrande A, Schreckenberg K, Mbosso C, Anegbeh P, Okafor V, Kanmegne J (2006) Farmers’ fruit tree-growing strategies in the humid forest zone of Cameroon and Nigeria. Agrofor Syst 67(2):159–175

    Article  Google Scholar 

  • Di Falco S, Perrings C (2003) Crop genetic diversity, productivity and stability of agroecosystems. A theoretical and empirical investigation. Scottish J Polit Econ 50:207–216

    Article  Google Scholar 

  • Dick WA, van Doren DM Jr (1985) Continuous tillage and rotation combinations effects on corn, soybean, and oat yields. Agron J 77:159–465

    Article  Google Scholar 

  • Du-Toit JT, Walker BH, Campbell BM (2004) Conserving tropical nature: current challenges for ecologists. Trends Ecol Evol 19:12–17

    Article  PubMed  Google Scholar 

  • Edwards JH, Thurlow JL, Eaon JT (1988) Influence of tillage and crop rotation on yields of corn, soybean, and wheat. Agron J 80:76–80

    Article  Google Scholar 

  • FAOSTAT (2009). http://faostat.fao.org/default.aspx

  • Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHH (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506

    Article  CAS  PubMed  Google Scholar 

  • Fraley RT (2017) Monocultures: the myth the reality the future. https://monsanto.com/innovations/biotech-gmos/articles/monoculture-farming/. Accessed on 30 January 2018

  • Fraser EDG, Mabee W, Figge F (2005) A framework for assessing the vulnerability of food systems to future shocks. Futures 37(6):465–479

    Article  Google Scholar 

  • Gallandt ER, Haramoto ER (2004) Brassica cover cropping for weed management: a review. Renew. Agric Food Syst 19:87–198

    Google Scholar 

  • Giambalvo D, Stringi L, Durante G, Amato G, Frenda AS (2004) Nitrogen efficiency component analysis in wheat under rainfed. Mediterranean conditions: effects of crop rotation and nitrogen fertilization. In: Cantero-MartĂ­nez C, Gabiña D (eds) Mediterranean rainfed agriculture: strategies for sustainability. Mediterranean Agronomic Institute of Zaragoza, Zaragoza, pp 169–173

    Google Scholar 

  • Grodzinsky AM (1992) Allelopathic effects of cruciferous plants in crop rotation. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Chapman and Hall, London, pp 77–85

    Chapter  Google Scholar 

  • Gut L, Schilder A, Isaacs R, McManus P (2017) How pesticide resistance develops. Available at msue.anr.msu.edu/topic/grapes/integrated_pest_management/how_pest_resistance_develops

  • Hajduk E, WĹ‚aĹ›niewski S, Szpunar-Krok E (2015) Influence of legume crops on content of organic carbon in sandy soil. Soil Sci Annu 66:52–56

    Article  CAS  Google Scholar 

  • Hall J (2003) Environment: aliens plant species invade Southern Africa. Global Info Network June 27:1–2

    Google Scholar 

  • Hartwig NL, Ammon HU (2002) Cover crops and living mulches. Weed Sci 50:688–699

    Article  CAS  Google Scholar 

  • Heenan DP, Chan KY, Knight PG (2004) Long-term impact of rotation, tillage and stubble management on the loss of soil organic carbon and nitrogen from a chromic Luvisol. Soil Tillage Res 76:59–68

    Article  Google Scholar 

  • Hernanz JL, Sanchez-Giron V, Navarrete L (2009) Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric Ecosyst Environ 133:114–122

    Article  CAS  Google Scholar 

  • Hiltbrunner J, Liedgens M, Bloch L, Stamp P, Streit B (2007) Legume cover crops as living mulches for winter wheat: components of biomass and the control of weeds. Eur J Agron 26:21–29

    Article  Google Scholar 

  • Hocking PJ (2001) Organic acids exuded from roots in phosphorus uptake and aluminum tolerance of plants in acid soils. Adv Agron 74:63–97

    Article  CAS  Google Scholar 

  • Holt-GimĂ©nez E (2002) Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring. Agric Ecosyst Environ 93(1–3):87–105

    Article  Google Scholar 

  • Hooper D, Vitousek PM (1997) The effect of plant composition and diversity on ecosystem processes. Science 277:1302–1305

    Article  CAS  Google Scholar 

  • Huang HC, Chou CH, Erickson RS (2006) Soil sickness and its control. Allelopathy J 18:1–21

    CAS  Google Scholar 

  • Iqbal Z, Nasir H, Hiradate S, Fujii Y (2006) Plant growth inhibitory activity of Lycoris radiate Herb. and the possible involvement of lycorine as an allelochemical. Weed Biol Manag 6:221–227

    Article  CAS  Google Scholar 

  • Jarvis D, Hodgkin T (2000) Farmer decision making and genetic diversity: linking multidisciplinary research to implementation on-farm. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. International Plant Genetic Resources Institute/International Development Research Centre/Lewis Publishers, Rome/Ottawa/Boca Raton

    Google Scholar 

  • Jat RD, Jat HS, Nanwal RK, Yadav AK, Bana A, Choudhary KM, Kakraliya SK, Sutaliya JM, Sapkota TB, Jat ML (2018) Conservation agriculture and precision nutrient management practices in maize-wheat system: effects on crop and water productivity and economic profitability. Field Crops Res 222:111–120

    Article  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJ, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Katsvairo T, Cox WJ, van Es H (2002) Tillage and rotation effects on soil physical characteristics. Agron J 94:299–304

    Article  Google Scholar 

  • Kazula MJ, Lauer JG, Arriaga FJ (2017) Crop rotation effect on selected physical and chemical properties of Wisconsin soils. J Soil Water Conser 72:553–563

    Article  Google Scholar 

  • Khan K, Verma RK (2018) Diversifying cropping systems with aromatic crops for better productivity and profitability in subtropical north Indian plains. Ind Crop Prod 115:104–110

    Article  Google Scholar 

  • Kobayashi Y, Ito M, Suwanarak K (2003) Evaluation of smothering effect of four legume covers on Pennisetum polystachion ssp. Setosum (Swartz) Brunken. Weed Biol Manag 3:222–227

    Article  Google Scholar 

  • Kobayashi H, Miura S, Oyanagi A (2004) Effects of winter barley as a cover crop on the weed vegetation in a no-tillage soybean. Weed Biol Manag 4:195–205

    Article  Google Scholar 

  • Kumar M, Ghorai AK, Mitra S, Majumdar B, Naik M, Kundu DK (2014) Productivity and resource use efficiency of different jute based cropping systems under nutrient and crop residue management practices. J Agri Search 3(2):76–81

    Google Scholar 

  • Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E, Mueller ND, Gerber JS (2016) Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ Res Lett 11:095007

    Article  Google Scholar 

  • Lemke RL, Zhong Z, Campbell CA, Zentner R (2007) Can pulse crops play a role in mitigating greenhouse gases from North American agriculture? Agron J 99:1719–1725

    Article  CAS  Google Scholar 

  • Lin BB (2007) Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric For Meteorol 144(1/2):85–94

    Article  Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61(3):183–193

    Article  Google Scholar 

  • Lincoln C, Isley D (1947) Corn as a trap for cotton bollworm. NJ Econ Entomol 40:437

    Article  CAS  Google Scholar 

  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercropping: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5(4):396–410

    Google Scholar 

  • Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14

    Article  Google Scholar 

  • McCord PF, Cox M, Schmitt-Harsh M, Evans T (2015) Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy 42:738–750

    Article  Google Scholar 

  • Miller PR, Gan Y, McConkey BG, McDonald CL (2003) Pulse crops for the northern Great Plains. Agron J 95:980–986

    Google Scholar 

  • Mitchell CE, Tilman D, Groth JV (2002) Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83:1713–1726

    Article  Google Scholar 

  • Molua EL (2005) The economics of tropical agroforestry systems: the case of agroforestry farms in Cameroon. Forest Policy Econ 7:199–211

    Article  Google Scholar 

  • Morris RA, Garrity DP (1993) Resource capture and utilization in intercropping: water. Field Crops Res 34(3/4):303–317

    Article  Google Scholar 

  • Naeem S, Thomson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can affect the functioning of ecosystems. Nature 368:734–737

    Article  Google Scholar 

  • Nawaz A, Farooq M, Lal R, Rehman A, Hussain T, Nadeem A (2017) Influence of sesbania brown manuring and rice residue mulch on soil health, weeds and system productivity of conservation rice–wheat systems. Land Degrad Develop 28:1078–1090

    Article  Google Scholar 

  • Neill SP, Lee DR (2001) Sustainable agriculture: the case of cover crops in northern Honduras. Econ Dev Cult Change 49(4):793–820

    Article  Google Scholar 

  • Nemecek T, von Richthofen JS, Dubois G, Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393

    Article  Google Scholar 

  • Neuman W, Pollack A (2010) Farmers cope with roundup-resistant weeds. Retrieved from www.nytimes.com/2010/05/04/business/energy-environment/04weed.html?pagewanted=all

  • Nguyen Q, Hoang MH, Ă–born I, Noordwijk MV (2013) Multipurpose agroforestry as a climate change resiliency option for farmers: an example of local adaptation in Vietnam. Clim Chang 117:241–257

    Article  Google Scholar 

  • Ojasti J (2001) Especies exĂłticas invasoras. Estrategia regional de biodiversidad para los paĂ­ses del trĂłpico andino. Convenio de CooperaciĂłn TĂ©cnica ATN/JF-5887-RG CAN-BID. Venezuela

    Google Scholar 

  • Perfecto I, Vandermeer JH, Bautista GL, Nuñez GI, Greenberg R, Bichier P, Langridge S (2004) Greater predation in shaded coffee farms: the role of resident Neotropical birds. Ecology 85:2677–2681

    Article  Google Scholar 

  • Peters RD, Sturz AV, Carter MR, Sanderson JB (2003) Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Tillage Res 72:181–192

    Article  Google Scholar 

  • Philpott SM, Lin BB, Jha S, Brines SJ (2008) A multi-scale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features. Agric Ecosyst Environ 128(1/2):12–20

    Article  Google Scholar 

  • Pooniya V, Choudhary AK, Bana RS, Sawarnalaxmi K, Pankaj Rana DS, Puniya MM (2018) Influence of summer legume residue recycling and varietal diversification on productivity, energetics, and nutrient dynamics in basmati rice–wheat cropping system of western Indo-Gangetic Plains. J Plant Nutr:1–16

    Google Scholar 

  • Power JF, Follet RF (1987) Monoculture. Soil Sci Soc Am J 25:78–86

    Google Scholar 

  • Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–810

    Article  CAS  PubMed  Google Scholar 

  • Rosset P, Vandermeer J, Cano M, Varela PG, Snook A, Hellpap C (1985) El Frijol como cultivo trampa para el combate de Spodoptera sunia Guenee (Lepidoptera: Noctuidae) en plantulas de tomate. Agronomia Costarricense 9:99–102

    Google Scholar 

  • Ryan RL, Erickson DL, De Young R (2003) Farmers’ motivations for adopting conservation practices along riparian zones in a mid-Western agricultural watershed. J Environ Plan Manage 46(1):19–37

    Article  Google Scholar 

  • Schreiber MM (1992) Influence of tillage, crop rotation, and weed management on giant foxtail (Setaria faberi) population dynamics and corn yield. Weed Sci 40:e653

    Article  Google Scholar 

  • Sharma SN, Prasad R (1999) Effet of Sesbania green manuring and mungbean residue incorporation on profitability and nitrogen uptake of a rice–wheat cropping. Bioresour Techol 67:171–175

    Article  CAS  Google Scholar 

  • Sharma SN, Prasad R, Singh RK (2000) Influence of summer legumes in rice–wheat cropping system on soil fertility. Indian J Agric Sci 70:357–359

    Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smale M, King A (2005) Genetic resource policies. What is diversity worth to farmers? Briefs 13–18. International Food Policy Research Institute and the International Plant Genetic Resources Institute

    Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:2

    Article  Google Scholar 

  • Sunderland K, Samu F (2000) Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Appl 95:1–13

    Article  Google Scholar 

  • Tengo M, Belfrage K (2004) Local management practices for dealing with change and uncertainty: a cross-scale comparison of cases in Sweden and Tanzania. Ecol Soc 9(3):4

    Article  Google Scholar 

  • Tilman D, Lehma CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Nat Acad Sci U S A 94:1857–1861

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Van Emden HF, Dabrowski ZT (1997) Issues of biodiversity in pest management. Insect Sci Appl 15:605–620

    Google Scholar 

  • Winters P, Cavatassi R, Lipper L (2006) Sowing the seeds of social relations: the role of social capital in crop diversity, ESA Working Paper No. 06-16. FAO, Rome

    Google Scholar 

  • World Bank (2008) World development report 2008: agriculture for development. World Bank, Washington, DC

    Book  Google Scholar 

  • Wu L, Chen J, Wu H, Wang J, Wu Y, Lin S, Khan MU, Zhang Z, Lin W (2016) Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing. Sci Rep 6:26601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96(4):1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ijaz, M. et al. (2019). Crop Diversification and Food Security. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9151-5_26

Download citation

Publish with us

Policies and ethics