Skip to main content

Advanced Image Techniques in Chronic Kidney Disease

  • Chapter
  • First Online:
Chronic Kidney Disease
  • 2002 Accesses

Abstract

Chronic kidney disease (CKD) is increasingly recognized as a global public health problem. How to accurate assessment this irreversible disease process is a key point for the secondary treatment. Over the past decade, applications of novel image methods provide noninvasive, reliable, quantitative data of renal perfusion, glomerular filtration, interstitial diffusion, and the degree of renal fibrosis. Moreover, these techniques also offer pathophysiologic data such as energy dys-metabolism in the initial disease stage. This chapter reviews advanced applications of the image techniques including ultrasound-based techniques, multi-detector computed tomography, magnetic resonance imaging, and nuclear-based techniques in CKD. The knowledge of the applications, advantages, and disadvantages of these techniques could open a framework for nephrologists to make informed decisions in clinical practice. However, there remains a gap between theoretical studies and clinical applications. Standard protocol and generic analysis model are needed for large-scale clinical application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247–59.

    Article  CAS  PubMed  Google Scholar 

  2. Tampe D, Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol. 2014;10(4):226–37.

    Article  CAS  PubMed  Google Scholar 

  3. Tondel C, Vikse BE, Bostad L, Svarstad E. Safety and complications of percutaneous kidney biopsies in 715 children and 8573 adults in Norway 1988-2010. Clin J Am Soc Nephrol. 2012;7(10):1591–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meola M, Samoni S, Petrucci I. Imaging in chronic kidney disease. Contrib Nephrol. 2016;188:69–80.

    Article  PubMed  Google Scholar 

  5. Vegar Zubovic S, Kristic S, Sefic Pasic I. Relationship between ultrasonographically determined kidney volume and progression of chronic kidney disease. Med Glas (Zenica). 2016;13(2):90–4.

    Google Scholar 

  6. Boddi M, Natucci F, Ciani E. The internist and the renal resistive index: truths and doubts. Intern Emerg Med. 2015;10(8):893–905.

    Article  PubMed  Google Scholar 

  7. Spatola L, Andrulli S. Doppler ultrasound in kidney diseases: a key parameter in clinical long-term follow-up. J Ultrasound. 2016;19(4):243–50.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boddi M. Renal ultrasound (and Doppler Sonography) in hypertension: an update. Adv Exp Med Biol. 2017;956:191–208.

    Article  PubMed  Google Scholar 

  9. Lennartz CS, Pickering JW, Seiler-Mussler S, Bauer L, Untersteller K, Emrich IE, et al. External validation of the kidney failure risk equation and re-calibration with addition of ultrasound parameters. Clin J Am Soc Nephrol. 2016;11(4):609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang EH. An introduction to contrast-enhanced ultrasound for nephrologists. Nephron. 2018;138(3):176–85.

    Article  PubMed  Google Scholar 

  11. McArthur C, Baxter GM. Current and potential renal applications of contrast-enhanced ultrasound. Clin Radiol. 2012;67(9):909–22.

    Article  CAS  PubMed  Google Scholar 

  12. Kalantarinia K, Belcik JT, Patrie JT, Wei K. Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound. Am J Physiol Renal Physiol. 2009;297(4):F1129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneider AG, Hofmann L, Wuerzner G, Glatz N, Maillard M, Meuwly JY, et al. Renal perfusion evaluation with contrast-enhanced ultrasonography. Nephrol Dial Transplant. 2012;27(2):674–81.

    Article  CAS  PubMed  Google Scholar 

  14. Schneider AG, Goodwin MD, Schelleman A, Bailey M, Johnson L, Bellomo R. Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study. Crit Care. 2014;18(6):653.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Cheng JF, Sun LP, Song YX, Guo LH, Xu JM, et al. Use of contrast-enhanced ultrasound to study relationship between serum uric acid and renal microvascular perfusion in diabetic kidney disease. Biomed Res Int. 2015;2015:732317.

    PubMed  PubMed Central  Google Scholar 

  16. Grenier N, Gennisson JL, Cornelis F, Le Bras Y, Couzi L. Renal ultrasound elastography. Diagn Interv Imaging. 2013;94(5):545–50.

    Article  CAS  PubMed  Google Scholar 

  17. Derieppe M, Delmas Y, Gennisson JL, Deminiere C, Placier S, Tanter M, et al. Detection of intrarenal microstructural changes with supersonic shear wave elastography in rats. Eur Radiol. 2012;22(1):243–50.

    Article  PubMed  Google Scholar 

  18. Grenier N, Poulain S, Lepreux S, Gennisson JL, Dallaudiere B, Lebras Y, et al. Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol. 2012;22(10):2138–46.

    Article  PubMed  Google Scholar 

  19. Ehling J, Babickova J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, et al. Quantitative micro-computed tomography imaging of vascular dysfunction in progressive kidney diseases. J Am Soc Nephrol. 2016;27(2):520–32.

    Article  CAS  PubMed  Google Scholar 

  20. Tsushima Y, Blomley MJ, Okabe K, Tsuchiya K, Aoki J, Endo K. Determination of glomerular filtration rate per unit renal volume using computerized tomography: correlation with conventional measures of total and divided renal function. J Urol. 2001;165(2):382–5.

    Article  CAS  PubMed  Google Scholar 

  21. Grenier N, Quaia E, Prasad PV, Juillard L. Radiology imaging of renal structure and function by computed tomography, magnetic resonance imaging, and ultrasound. Semin Nucl Med. 2011;41(1):45–60.

    Article  PubMed  Google Scholar 

  22. Morrell GR, Zhang JL, Lee VS. Magnetic resonance imaging of the fibrotic kidney. J Am Soc Nephrol. 2017;28(9):2564–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO. MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol. 2008;43(1):40–8.

    Article  PubMed  Google Scholar 

  24. Perazella MA. Nephrogenic systemic fibrosis, kidney disease, and gadolinium: is there a link? Clin J Am Soc Nephrol. 2007;2(2):200–2.

    Article  CAS  PubMed  Google Scholar 

  25. Kallen AJ, Jhung MA, Cheng S, Hess T, Turabelidze G, Abramova L, et al. Gadolinium-containing magnetic resonance imaging contrast and nephrogenic systemic fibrosis: a case-control study. Am J Kidney Dis. 2008;51(6):966–75.

    Article  PubMed  Google Scholar 

  26. Dambreville S, Chapman AB, Torres VE, King BF, Wallin AK, Frakes DH, et al. Renal arterial blood flow measurement by breath-held MRI: accuracy in phantom scans and reproducibility in healthy subjects. Magn Reson Med. 2010;63(4):940–50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schoenberg SO, Aumann S, Just A, Bock M, Knopp MV, Johansson LO, et al. Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): results in animals and humans with renal artery stenosis. Magn Reson Med. 2003;49(2):288–98.

    Article  PubMed  Google Scholar 

  28. Ritt M, Janka R, Schneider MP, Martirosian P, Hornegger J, Bautz W, et al. Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Nephrol Dial Transplant. 2010;25(4):1126–33.

    Article  CAS  PubMed  Google Scholar 

  29. Wang WJ, Pui MH, Guo Y, Wang LQ, Wang HJ, Liu M. 3T magnetic resonance diffusion tensor imaging in chronic kidney disease. Abdom Imaging. 2014;39(4):770–5.

    Article  PubMed  Google Scholar 

  30. Feng Q, Ma Z, Wu J, Fang W. DTI for the assessment of disease stage in patients with glomerulonephritis—correlation with renal histology. Eur Radiol. 2015;25(1):92–8.

    Article  PubMed  Google Scholar 

  31. Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol. 2011;22(8):1429–34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology. 2005;235(3):911–7.

    Article  PubMed  Google Scholar 

  33. Yalcin-Safak K, Ayyildiz M, Unel SY, Umarusman-Tanju N, Akca A, Baysal T. The relationship of ADC values of renal parenchyma with CKD stage and serum creatinine levels. Eur J Radiol Open. 2016;3:8–11.

    Article  PubMed  Google Scholar 

  34. Toya R, Naganawa S, Kawai H, Ikeda M. Correlation between estimated glomerular filtration rate (eGFR) and apparent diffusion coefficient (ADC) values of the kidneys. Magn Reson Med. 2010;9(2):59–64.

    Article  Google Scholar 

  35. Lu L, Sedor JR, Gulani V, Schelling JR, O'Brien A, Flask CA, et al. Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol. 2011;34(5):476–82.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gaudiano C, Clementi V, Busato F, Corcioni B, Orrei MG, Ferramosca E, et al. Diffusion tensor imaging and tractography of the kidneys: assessment of chronic parenchymal diseases. Eur Radiol. 2013;23(6):1678–85.

    Article  PubMed  Google Scholar 

  37. Gloviczki ML, Glockner JF, Lerman LO, McKusick MA, Misra S, Grande JP, et al. Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension. 2010;55(4):961–6.

    Article  CAS  PubMed  Google Scholar 

  38. Ebrahimi B, Li Z, Eirin A, Zhu XY, Textor SC, Lerman LO. Addition of endothelial progenitor cells to renal revascularization restores medullary tubular oxygen consumption in swine renal artery stenosis. Am J Physiol Renal Physiol. 2012;302(11):F1478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yin WJ, Liu F, Li XM, Yang L, Zhao S, Huang ZX, et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI. Eur J Radiol. 2012;81(7):1426–31.

    Article  PubMed  Google Scholar 

  40. Warner L, Glockner JF, Woollard J, Textor SC, Romero JC, Lerman LO. Determinations of renal cortical and medullary oxygenation using blood oxygen level-dependent magnetic resonance imaging and selective diuretics. Invest Radiol. 2011;46(1):41–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee CU, Glockner JF, Glaser KJ, Yin M, Chen J, Kawashima A, et al. MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol. 2012;19(7):834–41.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Warner L, Yin M, Glaser KJ, Woollard JA, Carrascal CA, Korsmo MJ, et al. Noninvasive in vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Invest Radiol. 2011;46(8):509–14.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ogawa S, Abe H, Katsuta T, Fukuda K, Ogata T, Miki K, et al. Early and noninvasive evaluation using superficial temporal artery duplex ultrasonography after indirect bypass for adult ischemic moyamoya disease. Acta Neurochir. 2017;159(3):577–82.

    Article  PubMed  Google Scholar 

  44. Vyhnanovska P, Dezortova M, Herynek V, Taborsky P, Viklicky O, Hajek M. In vivo 31P MR spectroscopy of human kidney grafts using the 2D-chemical shift imaging method. Transplant Proc. 2011;43(5):1570–5.

    Article  CAS  PubMed  Google Scholar 

  45. Haufe SE, Riedmuller K, Haberkorn U. Nuclear medicine procedures for the diagnosis of acute and chronic renal failure. Nephron Clin Pract. 2006;103(2):c77–84.

    Article  PubMed  Google Scholar 

  46. Itoh K. 99mTc-MAG3: review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann Nucl Med. 2001;15(3):179–90.

    Article  CAS  PubMed  Google Scholar 

  47. Goethals P, Volkaert A, Vandewielle C, Dierckx R, Lameire N. 55Co-EDTA for renal imaging using positron emission tomography (PET): a feasibility study. Nucl Med Biol. 2000;27(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  48. Rosenberger C, Griethe W, Gruber G, Wiesener M, Frei U, Bachmann S, et al. Cellular responses to hypoxia after renal segmental infarction. Kidney Int. 2003;64(3):874–86.

    Article  PubMed  Google Scholar 

  49. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med. 2005;46(8):1333–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, Z. (2020). Advanced Image Techniques in Chronic Kidney Disease. In: Yang, J., He, W. (eds) Chronic Kidney Disease. Springer, Singapore. https://doi.org/10.1007/978-981-32-9131-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9131-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9130-0

  • Online ISBN: 978-981-32-9131-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics