Skip to main content

Potassium Solubilizing Bacteria (KSB)

  • Chapter
  • First Online:

Abstract

Potassium (K) is reflected as a fundamental supplement and a noteworthy constituent inside every single living cell, which is required in vast sums by plants, animals, and people. In environment, soils normally contain K in bigger sums than some other supplements.As rocks gradually weathered, K is discharged, yet change of K from the basic portion to some other frame is as often as possible to ease back to give them a lot of this basic supplement required by crops. Utilization of chemical fertilizers has an extensive negative effect on ecological supportability. Potassium solubilizing bacteria (KSB) solubilize K-bearing minerals and change over the insoluble K to dissolvable types of K that plants can get to. Countless soil microscopic organisms, for example, Acidithiobacillus ferrooxidans, Paenibacillus spp., Bacillus mucilaginosus, B. edaphicus, and B. circulans, have ability to solubilize K minerals like biotite, muscovite, feldspar, mica, iolite, and orthoclase. KSB are normally present in every one of the soil, in spite of the fact that their number, assorted variety, and capacity for K solubilization differ which rely on the soil and climatic conditions. Despite that, KSB are the most essential microscopic organisms for solubilizing K minerals which demonstrate viable association amongst soil and plant frameworks. These microbes can be utilized productively as a wellspring of K-fertilizer for managing crop generation and keeping up soil K. Subsequently, generation and administration of organic manures containing KSB can scatter K inadequacy particularly in paddy field or zones where plants are normal for K and are likewise an approach to accomplish the objectives of the practical farming. This article shows a diagram of flow patterns and difficulties on the KSB, components, and their part in plant development advancement and in the end gives a few viewpoints for study on K in agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbiramy KS, Ross PR (2013) Determination of acute toxicity of urea to Eisenia fetida by a simple paper contact method. Int J Sci Environ Technol 2:886–891

    Google Scholar 

  • Ahemad M, Khan MS (2009) Toxicity assessment of herbicides Quizalafop-p-ethyl and Clodinafop towards Rhizobium pea Symbiosis. Bull Environ Contam Toxicol 82(6):761–766

    Article  CAS  PubMed  Google Scholar 

  • Akhtar J, Saqib ZA, Sarfraz M, Saleem I, Haq MA (2010) Evaluating salt tolerant cotton genotypes at different levels of NaCl stress in solution and soil culture. Pak J Bot 42(4):2857–2866

    Google Scholar 

  • Alagawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105(2):241–246

    Article  Google Scholar 

  • Amaral FP, Pankievicz VCS, Arisi ACM, de Souza EM, Pedrosa F, Stacey G (2016) Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Mol Biol 90(6):689–697

    Article  PubMed  CAS  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2012) Screening of potassium solubilizing bacteria (KSB) for plant growth promotional activity. BIOINFOLET 9(4):627–630

    Google Scholar 

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160(1–4):83–89

    Article  CAS  PubMed  Google Scholar 

  • Badr MA (2006) Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. J Appl Sci Res 2:1191–1198

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-Gangetic plain of India. Geomicrobiol J 34(5):454–466

    CAS  Google Scholar 

  • Bajpai PD, Sundara R (1971) Phosphate solubilizing bacteria, solubilization of phosphate in liquid culture by selected bacteria as affected by different pH values. J Soil Sci Plant Nutr 17:41–43

    Article  Google Scholar 

  • Bakhshandeh E, Pirdashti H, Lendeh KS (2017) Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol Eng 103:164–169

    Article  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317(1–2):235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fert Soils 46(6):641–648

    Article  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, McConkey BJ, Glick BR (2010) Proteomic studies of plant–bacterial interactions. Soil Biol Biochem 42(10):1673–1684

    Article  CAS  Google Scholar 

  • de Oliveira DM, de Lima ALA, Diniz NB, Ferreira da Silva SL, Simões AN (2018) Inoculation of plant-growth-promoting rhizobacteria in Myracrodruon urundeuva Allemão supports in tolerance to drought stress. J Plant Interact 13(1):91–99

    Article  CAS  Google Scholar 

  • Demissie S, Muleta D, Berecha G (2013) Effect of phosphate solubilizing Bacteria on seed germination and seedling growth of Faba bean (Vicia faba L.). Int J Agric Res 8(3):123–136

    Article  CAS  Google Scholar 

  • Dessaux Y, Hinsinger P, Lemanceau P (2009) Rhizosphere: so many achievements and even more challenges. Plant Soil 321(1):1–3

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159(4):371–394

    Article  CAS  PubMed  Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, ha Tien, Kiên Giang province Vietnam. Am J Life Sci 1(3):88–92

    Article  CAS  Google Scholar 

  • do Amaral FP, Pankievicz VCS, Arisi ACM, de Souza EM, Pedrosa F, Stacey G (2016) Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Mol Biol 90(6):689–697

    Article  PubMed  CAS  Google Scholar 

  • Ekin Z (2010) Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr J Biotechnol 9(25):3794–3800

    CAS  Google Scholar 

  • Etesami H, Alikhani HA (2016a) Evaluation of gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryza sativa L.) pathogens. Eur J Plant Pathol:1–8

    Google Scholar 

  • Etesami H, Alikhani HA (2016b) Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biol Control 94:11–24

    Article  Google Scholar 

  • Etesami H, Hosseini HM, Alikhani HA (2014a) Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiol Mol Biol Plants 20(4):425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Hosseini HM, Alikhani HA, Mohammadi L (2014b) Bacterial biosynthesis of 1 aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. J Plant Growth Regul 33:654–670

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2009) Resource STAT-fertilizer. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Gaind S, Gaur AC (1991) Thermotolerant phosphate solubilizing microorganisms and their interaction with mung bean. Plant Soil 133(1):141–149

    Article  CAS  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting Rhizopseudomonad. Curr Microbiol 56(4):403–407

    Article  CAS  PubMed  Google Scholar 

  • Gange AC, Gadhave KR (2018) Plant growth-promoting rhizobacteria promote plant size inequality. Sci Rep 8:13828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biol Biochem 75:54–63

    Article  CAS  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Research and Reviews J Microbiol Biotechnol 2:1):1–1):7

    Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Boil Sci 1(2):176–180

    Google Scholar 

  • Han HS, Supanjani, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130–136

    Article  CAS  Google Scholar 

  • Hassan EA, Hassan EA, Hamad EH (2010) Microbial solubilization of phosphate–potassiumrocks and their effect on khella (Ammi visnaga) growth. Ann Agric Sci 55(1):37–53

    Google Scholar 

  • Haub C, Gribble J, Jacobsen L (2012) World population data sheet 2012. Population Reference Bureau, Washington, DC

    Google Scholar 

  • Hu XF, Chen J, g Guo JF (2006) Two phosphate- and potassium-solubilizing Bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22(9):983–990

    Article  CAS  Google Scholar 

  • Keshavarz Zarjani J, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59(12):1713–1723

    Article  CAS  Google Scholar 

  • Krishnamurthy HA (1989) Effect of pesticides on phosphate solubilizing microorganisms, M.Sc. (Agri.) thesis. University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  CAS  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting Rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11(3):e0152478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar M, Rocha I, Freitas H (2015) Inoculation with metal-mobilizing plant-growth-promoting Rhizobacterium Bacillus sp. SC2b and its role in Rhizoremediation. J Toxic Environ Health A 78(13–14):931–944

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Maqsood M, Shehzad MA, Wahid A, Butt AA (2013) Improving drought tolerance in maize (Zea mays) with potassium application in furrow irrigation systems. Int J Agric Biol 15(6)

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169(5):337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mikhailouskaya N, Tcherhysh A (2005) K-mobilizing bacteria and their effect on wheat yield. Latvian J Agron 8:154–157

    Google Scholar 

  • Mursyida E, Mubarik NR, Tjahjoleksono A (2015) Selection and identification of phosphate- potassium solubilizing Bacteria from the area around the limestone Mining in Cirebon Quarry. Res J Microbiol 10(6):270

    Article  CAS  Google Scholar 

  • Niu S-Q, Li H-R, Paré PW, Aziz M, Wang S-M, Shi H, Li J, Han Q-Q, Guo S-Q, Li J (2015) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil:1–14

    Google Scholar 

  • Pacheco J, Marín L, Cabrera A, Steinich B, Escolero O (2001) Nitrate temporal and spatial patterns in 12 water-supply wells, Yucatan, Mexico. Environ Geol 40(6):708–715

    Article  CAS  Google Scholar 

  • Padma SD, Sukumar J (2015) Response of mulberry to inoculation of potash mobilizing bacterial isolate and other bio-inoculants. Glob J Bio Sci Bio Technol 4:50–53

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Piccini D, Azcon R (1987) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant Soil 101(1):45–50

    Article  CAS  Google Scholar 

  • Prajapati K, Modi H (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIBTech J Microbiol 1(2–3):8–14

    Google Scholar 

  • Rajawat MVS, Singh S, Saxena AK (2014) A new spectrophotometric method for quantification of potassium solubilized by bacterial cultures. Indian J Exp Biol 52:261–266

    CAS  PubMed  Google Scholar 

  • Rajawat MVS, Singh S, Tyagi SP, Saxena AK (2016) A modified plate assay for rapid screening of potassium- solubilizing bacteria. Pedosphere 26(5):768–773

    Article  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Article  Google Scholar 

  • Saiyad SA, Jhala YK, Vyas RV (2015) Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. Int J Sci Res Publ 5:1–6

    Google Scholar 

  • Sangeeth K, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices Arom Crops 21(2):118–124

    Google Scholar 

  • Schoebitz M, Ceballos C, Ciamp L (2013) Effect of immobilized phosphate solubilizing bacteria on wheat growth and phosphate uptake. J Soil Sci Plant Nutr 13:1):1–1)10

    Google Scholar 

  • Setiawati TC, Mutmainnah L (2016) Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric Agric Sci Proc 9:108–117

    Google Scholar 

  • Shaimukhametov MS, Petrofanov VL (2008) Effect of long-term fertilization on the K-fixing capacity of soils. Eurasian Soil Sci 41(4):441–451

    Article  Google Scholar 

  • Sharma SK (2011) Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in Central India. J Microbiol Biotechnol 21(11):1127–1142

    Article  CAS  PubMed  Google Scholar 

  • Shelobolina E, Xu H, Konishi H, Kukkadapu R, Wu T, Blöthe M, Roden E (2012) Microbial lithotrophic oxidation of structural Fe (II) in biotite. Appl Environ Microbiol 78(16):5746–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37(10):1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, Huang W (2001) Mechanism of potassium release from feldspar affected by the sprain Nbt of silicate bacterium. Acta Pedol Sin 39(6):863–871

    Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edphicaus strain NBT and its effect on growth of chili and cotton. Agric Sci China 2:40–41

    Google Scholar 

  • Sheng XF, Jiang CY, He LY (2008) Characterization of plant growth-promoting NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. Can J Microbiol 54(5):417–422

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2014) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Geomicrobiology and Biogeochemistry. Springer, Berlin, pp 175–198

    Google Scholar 

  • Singh G, Biswas DR, Marwaha TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (zea mays) and wheat (Triticum aestivum l.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33(8):1236–1251

    Article  CAS  Google Scholar 

  • Sparks DL (1980) Chemistry of soil potassium in Atlantic coastal plain soils: a review. Commun Soil Sci Plant Anal 11(5):435–449

    Article  CAS  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. Potassium in agriculture:201–276

    Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals bybacteria and their effect on plant growth. World J Agric Sci 3:350–355

    Google Scholar 

  • Surapat W, Pukahuta C, Rattanachaikunsopon P, Aimi T, Boonlue S (2013) Characteristics of phosphate solubilization by phosphate-solubilizing bacteria isolated from agricultural chili soil and their efficiency on the growth of chili (Capsicum frutescens L. cv. Hua Rua). Chiang Mai J Sci 40(1):11–25

    CAS  Google Scholar 

  • Syed BA, Patel B (2014) Investigation and correlation of soil biotic and abiotic factors affecting agricultural productivity in semi-arid regions of North Gujarat, India

    Google Scholar 

  • Taha TM, Mahmod SAZ, El-Damaty AH, Hafez AM (1969) Activity of phosphate dissolving bacteria in Egyptian soils. Plant Soil 31:149–160

    Article  Google Scholar 

  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mol Breed 26(2):307–323

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899

    Article  CAS  Google Scholar 

  • Varma S, Mathur RS (1989) Biocoenotic association between nitrogen-fixing and phosphate-solubilizing microorganisms. Curr Sci 58(19):1099–1100

    CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Wang X, Chen W, Huang Q (2017) Isolation and identification of three potassium-solubilizing Bacteria from rape Rhizospheric soil and their effects on ryegrass. Geomicrobiol J 34(10):873–880

    Article  CAS  Google Scholar 

  • Yi LB, Peng QZ, He QZ, Peng QJ (2012) Isolation and identification of potash feldspar solubilizing bacteria and their potassium releasing activities. Chinese J Microecol 24(9):773–776

    CAS  Google Scholar 

  • Youssef GH, Seddik WMA, Osman MA (2010) Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. J Am Sci 6(11):647–660

    Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20(9):1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Zhang A-m, Zhao G-y, Gao T-g, Wang W, Li J, Zhang S-f, Zhu B-c (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: A soil microorganism with biological control potential. Afr J Microbiol Res 7(1):41–47

    Article  CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhao S, Li K, Zhou W, Qiu S, Huang S, He P (2016) Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north Central China. Agric Ecosyst Environ 216:82–88

    Article  CAS  Google Scholar 

  • Zhou HB, Zeng XX, Liu FF, Qiu GZ, Hu YH (2006) Screening, identification and desilication of a silicate bacterium. J Cent S Univ Technol 13(4):337–341

    Article  CAS  Google Scholar 

  • Zhou JM, Huang PM (2007) Kinetics of potassium release from illite as influenced by different phosphates. Geoderma 138(3–4):221–228

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajawat, M.V.S., Ansari, W.A., Singh, D., Singh, R. (2019). Potassium Solubilizing Bacteria (KSB). In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_9

Download citation

Publish with us

Policies and ethics