Skip to main content

Microbes for Bioremediation of Heavy Metals

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Heavy metal pollution is expanding its arms to every nook and corner of this living world, thereby swamping our ecosystem with heavy metals that prove to be hazardous for plants, animals, and humans. One of the most common, eco-friendly strategies that can be employed to counter this problem effectively is bioremediation for alleviating the stress of heavy metal contamination. To implement this strategy, exploration and identification of heavy metal resistance microbes is need of the hour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240(2):311–319

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68(2):360–367

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. J Institute of Integrative Omics and Applied Biotechnology(IIOAB) 3(3)

    Google Scholar 

  • Alia N, Sardar K, Said M, Salma K, Sadia A, Sadaf S, Toqeer A, Miklas S (2015) Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int J Environ Res Public Health 12(7):7400–7416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez S, Jerez CA (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 70:5177–5182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amoozegar MA, Ghazanfari N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Progress Biol Sci 2(1):1–11

    Google Scholar 

  • Anderson C, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arseniccontaminated sites in New Zealand. Curr Microbiol 48:341–347

    Article  CAS  PubMed  Google Scholar 

  • Anyanwu CU, Ugwu CE (2010) Incidence of arsenic resistant bacteria isolated from a sewage treatment plant. Int J Basic Appl Sci 10:64–78

    Google Scholar 

  • Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl Innov Eng Manage 5:2319–4847

    Google Scholar 

  • Bachate SP, Cavalca L, Andreoni V (2009) Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. J Appl Microbiol 107(1):145–156

    Article  CAS  PubMed  Google Scholar 

  • Bayat B, Sari B (2010) Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. J Hazard Mater 174(1–3):763–769

    Article  CAS  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34

    Article  CAS  Google Scholar 

  • Bradl HB (2005) Sources and origins of heavy metals. In: Interface science and technology, vol 6. Elsevier, pp 1–27

    Google Scholar 

  • Chang YC, Nawata A, Jung K, Kikuchi S (2012) Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil. J Ind Microbiol Biotechnol 39(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Chen CW, Chen CF, Dong CD (2012) Distribution and accumulation of mercury in sediments of Kaohsiung River mouth, Taiwan. APCBEE Procedia 1:153–158

    Article  CAS  Google Scholar 

  • Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33(6):745–755

    Article  CAS  PubMed  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12

    Article  CAS  Google Scholar 

  • Chien C-C, Hung C-W, Han C-T (2007) Removal of cadmium ions during stationary growth phase by an extremely cadmium-resistant strain of Stenotrophomonas sp. Environ Toxicol Chem 26(4):664

    Article  CAS  PubMed  Google Scholar 

  • Clausen CA (2000) Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manag Res 18(3):264–268

    Article  CAS  Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM, de Sousa PA, Melo DF, Coelho NM (2015) Bioremediation of polluted waters using microorganisms. Advances in Bioremediation of Wastewater and Polluted Soil: InTech 3(4):1–22

    Google Scholar 

  • Dash B, Soni R, Goel R (2019) Rhizobacteria for reducing heavy metal stress in Plant and soil. In: Sayyed RZ et al (eds) Plant growth promoting Rhizobacteria for sustainable stress management, microorganisms for sustainability 12. Springer Nature Singapore Pte Ltd

    Google Scholar 

  • Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7

    Article  Google Scholar 

  • El. Bestawy E, Helmy S, Hussien H, Fahmy M, Amer R (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3(1):181–192

    Google Scholar 

  • Eugenio FB (2008) Are more restrictive food cadmium standards justifiable health safety measures or opportunistic barriers to trade? An answer from economics and public health. Sci Total Environ 389(1):1–9

    Article  CAS  Google Scholar 

  • Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, Rudisill C (2012) Toxicological profile for cadmium

    Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • García-García JD, Sánchez-Thomas R, Moreno-Sánchez R (2016) Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 34(5):859–873

    Article  PubMed  CAS  Google Scholar 

  • Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res 6(1):147–161

    CAS  Google Scholar 

  • Ghodsi H, Hoodaji M, Tahmourespour A, Gheisari MM (2011) Investigation of bioremediation of arsenic by bacteria isolated from contaminated soil. Afr J Microbiol Res 5(32):5889–5895

    CAS  Google Scholar 

  • Goel R, Suyal DC, Kumar V, Jain L, Soni R (2017) Stress-tolerant beneficial microbes for sustainable agricultural production. In: Panpatte DG et al (eds) Microorganisms for green revolution, microorganisms for sustainability. Springer Nature Singapore Pte Ltd

    Google Scholar 

  • Grant CA, Sheppard SC (2008) Fertilizer impacts on cadmium availability in agricultural soils and crops. Hum Ecol Risk Assess Int J 14(2):210–228

    Article  CAS  Google Scholar 

  • Guo H, Luo S, Liang C, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 101(22):8599–8605

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C et al (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372. https://doi.org/10.4172/1948-5948.1000310

    Article  CAS  Google Scholar 

  • Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30–35

    Article  CAS  PubMed  Google Scholar 

  • Hansda A, Kumar V, Anshumali (2016) A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol 32(10):170

    Article  CAS  PubMed  Google Scholar 

  • Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Van Hecke E, Roels HA, Carleer R, Staessen JA (2007) House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res 103(1):30–37

    Article  CAS  PubMed  Google Scholar 

  • Huang T-L, Huang L-Y, Shih-Feng F, Trinh N-N, Huang H-J (2014) Genomic profiling of rice roots with short- and long-term chromium stress. Plant Mol Biol 86(1–2):157–170

    Article  CAS  PubMed  Google Scholar 

  • Jabbari Nooghabi M, Jabbari Nooghabi H, Nasiri P (2010) Detecting outliers in gamma distribution. Communications in Statistics - Theory Methods 39(4):698–706

    Article  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janssen PJ, Houdt RV, Moors H, Monsieurs P, Morin N, Michaux A (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208

    Article  PubMed  CAS  Google Scholar 

  • Jebelli MA, Maleki A, Amoozegar MA, Kalantar E, Shahmoradi B, Gharibi F (2017) Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation. Ecotoxicol Environ Saf 140:170–176

    Article  CAS  PubMed  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87

    Article  CAS  PubMed  Google Scholar 

  • Kalita D, Joshi SR (2017) Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol Rep 16:48–57. https://doi.org/10.1016/j.btre.2017.11.003

    Article  Google Scholar 

  • Kang C-H, Kwon Y-J, So J-S (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69

    Article  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29(1):1–46

    Article  CAS  Google Scholar 

  • Kumar P, Gupta SB, Anurag, Soni R (2019) Bioremediation of cadmium by mixed indigenous isolates Serratia liquefaciens BSWC3 and Klebsiella pneumoniae RpSWC3 isolated from industrial and mining affected water samples. Pollution 5(2):351–360

    CAS  Google Scholar 

  • Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water. IOSR J Environ Sci Toxicol Food Technol 8(7):44–50

    Article  Google Scholar 

  • Lane EA, Canty MJ, More SJ (2015) Cadmium exposure and consequence for the health and productivity of farmed ruminants. Res Vet Sci 101:132–139

    Article  CAS  PubMed  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  CAS  PubMed  Google Scholar 

  • Liao VH-C, Chu Y-J, Yu-Chen S, Hsiao S-Y, Wei C-C, Liu C-W, Liao C-M, Shen W-C, Chang F-J (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123(1–2):20–29

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan K, Rajaram (2014) Isolation and characterization of cadmium resistant bacteria from an industrially polluted coastal ecosystem on the southeast coast of India. Chem and Ecolog 30(7):622–635

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2009) Environmental microbiology. Academic, San Diego

    Book  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Miyatake M, Hayashi S (2009) Characteristics of arsenic removal from aqueous solution by Bacillus megaterium strain UM-123. Journal Environ Biotechnol 9(2):123–129

    Google Scholar 

  • Moghannem SA, Refaat BM, El-Sherbiny GM, El-Sayed MH, Elsehemy IA, Kalaba MH (2015) Characterization of heavy metal and antibiotic-resistant bacteria isolated from polluted localities in Egypt. Egyptian Pharm J 14(3):158

    Article  Google Scholar 

  • Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78(18):6397–6404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais S, Costa FG, Pereira ML (2012) Heavy metals and human health. In: Oosthuizen J (ed) Environmental health – emerging issues and practice. InTech, pp 227–246

    Google Scholar 

  • Morrow H (2010) Cadmium and Cadmium Alloys. Kirk-Othmer Encyclopedia of Chemical Technology:1–36

    Google Scholar 

  • Murthy S, Bali G, Sarangi SK (2012) Biosorption of lead by Bacillus cereus isolated from industrial effluents. Br Biotechnol J 2:73

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Naja GM, Volesky B (2009) Toxicity and sources of Pb , cd , hg , Cr , as , and radionuclides in the environment. In: Wang et al (eds) Handbook of advanced industrial and hazardous wastes management, pp 13–59

    Google Scholar 

  • Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic Bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46(4):363–371

    Article  PubMed  Google Scholar 

  • Neeratanaphan L, Tanee T, Tanomtong A, Tengjaroenkul B (2016) Identifying an efficient bacterial species and its genetic erosion for arsenic bioremediation of gold mining soil. Archives Environ Protection 42(3):58–66

    Article  Google Scholar 

  • Neeta B, Maansi V, Harpreet SB (2016) Characterization of heavy metal (cadmium and nickle) tolerant gram negative enteric bacteria from polluted Yamuna River, Delhi. Afr J Microbiol Res 10(5):127–137

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (2016) The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Metallomics 8:481–507

    Article  CAS  PubMed  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and Plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  PubMed Central  CAS  Google Scholar 

  • Okino S, Iwasaki K, Yagi O, Tanaka H (2000) Development of a biological mercury removal-recovery system. Biotechnol Lett 22:783–788

    Article  CAS  Google Scholar 

  • Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Panda B, Basu B, Acharya C, Rajaram H, Apte SK (2017) Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium. Aquat Toxicol 182:205–213

    Article  CAS  PubMed  Google Scholar 

  • Pandey N, Bhatt R (2015) Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J Basic Microbiol 55:1275–1286

    Article  CAS  PubMed  Google Scholar 

  • Patel J, Qiong Z, Michael R, McKay L, Vincent R, Xu Z (2010) Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl Biochem Biotechnol 160(1):232–243

    Article  CAS  PubMed  Google Scholar 

  • Pérez PL, López RA, González MN (2015) Cadmium removal at high concentration in aqueous medium: mediated by Desulfovibrio alaskensis. Int J Environ Sci Technol 12(6):1975–1986

    Article  CAS  Google Scholar 

  • Qing HU, Hong-yan QI, Jing-hai, ZENG, Hong-xun ZHANG (2007) Bacterial diversity in soils around a lead and zinc mine

    Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian journal of experimental biology, vol 41, pp 935–944

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79(933):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichman S (2014) Probing the plant growth-promoting and heavy metal tolerance characteristics of Bradyrhizobium japonicum CB1809. Eur J Soil Biol 63:7–13

    Article  CAS  Google Scholar 

  • Roane TM, Pepper IL (1999) Microbial responses to environmentally toxic cadmium. Microb Ecol 38(4):358–364

    Article  CAS  PubMed  Google Scholar 

  • Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng 83:52–59

    Article  CAS  Google Scholar 

  • Roman Ponce B, Ramos Garza J, Arroyo Herrera I, Maldonado Hernandez J, Bahena Osorio Y, Vasquez Murrieta MS, Wang ET (2018) Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Arch Microbiol 200:883–895

    Article  CAS  PubMed  Google Scholar 

  • Rosas I, Belmomt R, Baez AR, Villalobos-Pietrini R (1989) Some aspects of the environmental exposure to chromium residues in Mexico. Water Air Soil Pollut 48(3–4):463–475

    CAS  Google Scholar 

  • Sabdono A (2011) Cadmium removal by a bioreducpiun coral bacterium Pseudoalteromonas sp. strain CD15 isolated from the tissue of coral Goniastrea aspera, jepara waters. J Coastal Develop 13(2):81–91

    Google Scholar 

  • Sar P, Kazy S, Paul B, Sarkar A (2013) Metal bioremediation by thermophilic microorganisms. In: Satyanarayan T (ed) Thermophilic microbes in environment and industrial biotechnology: biotechnology of thermophiles. Springer Science, Berlin

    Google Scholar 

  • Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. Biomed Res Int 2017:6509648. https://doi.org/10.1155/2017/6509648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengor SS, Barua S, Gikas P, Ginn TR, Peyton B, Sani RK, Spycher N (2009) Influence of heavy metals on microbial growth kinetics including lag time: mathematical modeling and experimental verification. Environ Toxicol Chem 28(10):2020–2029

    Article  CAS  PubMed  Google Scholar 

  • Shakoori FR, Aziz I, Rehman A, Shakoori AR (2010) Isolation and characterization of arsenic reducing bacteria from industrial effluents and their potential use in bioremediation of wastewater. Pak J Zool 42:331–338

    CAS  Google Scholar 

  • Shakya S, Pradhan B (2009) Isolation and characterization of arsenic resistant pseudomonas stutzeri asp3 for its potential in arsenic resistance and removal. J Environ Manag 95:250–255

    Article  CAS  Google Scholar 

  • Shakya S, Pradhan B, Smith L, Shrestha J, Tuladhar S (2012) Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. J Environ Manag 95:S250–S255

    Article  CAS  Google Scholar 

  • Shamim S, Rehman A (2012) Cadmium resistance and accumulation potential of Klebsiella pneumoniae strain CBL-1 isolated from industrial wastewater. Pak J Zool 44:203–208

    Google Scholar 

  • Silver S (1998) Genes for all metals—a bacterial view of the periodic table. The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20:1–12

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Rai S, Pandey S, Agrawal C, Shrivastava AK, Kumar S, Rai LC (2012) Cadmium and UV-B induced changes in proteome and some biochemical attributes of Anabaena sp. PCC 7120. Phykos 42(1):39–50

    Google Scholar 

  • Sinha S, Mukharjee SK (2009) Pseudomonas aeruginosa KUCD1, A Possible Candidate for Cadmium Bioremediation. Brazilian. J Microbiol 40:655–662

    CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  PubMed  Google Scholar 

  • Sultana M, Hartig C, Planer-Friedrich B, Seifert J, Schlomann M (2011) Bacterial communities in Bangladesh aquifers differing in aqueous arsenic concentration. Geomicrobiol J 28:198–211

    Article  CAS  Google Scholar 

  • Tamas MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomol Ther 4:252–267. https://doi.org/10.3390/biom4010252

    Article  CAS  Google Scholar 

  • Tariq SR, Shah MH, Shaheen N, Jaffar M, Khalique A (2008) Statistical source identification of metals in ground water exposed to industrial contamination. Environ Monit 138:159–165

    Article  CAS  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy-metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari M, Bajpai S, Dewangan U (2015) An analytical study of heavy metal concentration in soil of an industrial region of Chhattisgarh, Central India. Int J Sci Res Publ

    Google Scholar 

  • Tsuruta T (2004) Cell-associated adsorption of thorium or uranium from aqueous system using various microorganisms. Water Air Soil Pollut 159(1):35–47

    Article  CAS  Google Scholar 

  • Verma N, Sharma R (2017) Bioremediation of toxic heavy metals: a patent review. Recent Pat Biotechnol 11(3)

    Google Scholar 

  • Zubair M, Shakir M, Ali Q, Rani N, Fatima N, Farooq S et al (2016) Rhizobacteria and phytoremediation of heavy metals. Environ Technol Rev 5:112–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soni, R., Dash, B., Kumar, P., Mishra, U.N., Goel, R. (2019). Microbes for Bioremediation of Heavy Metals. In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_6

Download citation

Publish with us

Policies and ethics