Skip to main content

Cropping Systems Effect on Soil Biological Health and Sustainability

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

The influence on the chemical and physical soil composition, exerted from the applied cropping system, is dominated by the amount and kind of residual plant material. The cropping system, defined by the cropping sequence and type, as well as by plant residual management and natural and/or artificial fertilization, shapes the biological soil activities and environment for the soil micro-biotic habitat. Also climate and soil type exert an influence on the soil’s biological activity in a significant amount. The effects, exerted from the farming practice on the soil microbial biomass, accumulate in a slow way and are often measureable only in the late stage, when changes in the microbial biomass already negatively affect fertility and stability of the soil ecosystem. Measuring the classical soil nutrition parameters does not always reveal these changes, and suitable soil health indicators are not established as a common standard. Soil microbial biomass turns out to be a good indicator for changes in the soil composition and shows potential for an early soil health indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Martinez V, Tabatabai MA (2000) Enzyme activities in a limed agricultural soil. Biol Fertil Soils 31:85–91

    Article  CAS  Google Scholar 

  • Agostino V, Rosenbaum MA (2018) Sulfate reducing electroautotrophs and their applications in bioelectro-chemical systems. Front Energy Res 6:55. https://doi.org/10.3389/fenrg.2018.00055

    Article  Google Scholar 

  • Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand – conditions and trends. Manaaki Whenua Press, Lincoln

    Google Scholar 

  • Alef K (1995) Estimation of microbial activities. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, pp 193–270

    Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic, London

    Chapter  Google Scholar 

  • Ali M (1992) Genotypic compatibility and spatial arrangement in chickpea (Cicer arietinum) and Indian mustard (Brassica juncea) intercropping in north-east plains. Indian J Agric Sci 62:249–253

    Google Scholar 

  • Alkorta I, Aizpurua A, Riga P, Albizu I, Amézaga I, Garbisu C (2013) Soil enzyme activities as biological indicators of soil health. Rev Environ Health 18:65–73

    Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Anderson T, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395

    Article  Google Scholar 

  • Anna PD (2014)Enzymes in agricultural sciences. OMICS Group, Foster City

    Google Scholar 

  • Aon MA, Colaneri AC (2001) Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl Soil Ecol 18:255–270

    Article  Google Scholar 

  • Aon MA, Cabello MN, Sarena DE, Colaneri AC, Franco MG, Burgos JL, Cortassa S (2001) Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Appl Soil Ecol 18:239–254

    Article  Google Scholar 

  • Araújo ASF, Simone C, Luiz FCL, Clóvis DB, Siu MT, Nico E (2013) Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil Biol Biochem 66:175–181

    Article  CAS  Google Scholar 

  • Awika JM (2011)Major cereal grains production and use around the World. In: Awika JM, Piironen V, Bean S (eds) Advances in cereal science: implications to food processing and health promotion. American Chemical Society, pp 1–13

    Google Scholar 

  • Balota EL, Kanashiro M, Filho AC, Andrade DS, Dick RP (2004) Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Braz J Microbiol 35:300–306

    Article  CAS  Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Bhavya VP, Kumar A, Kiran S, Alur SK, Shivakumar KM, Shivanna M (2018) Effect of different cropping system on important soil enzyme activity, organic carbon and microbial activity with different depth. Int J Curr Microbiol App Sci 7:315–322

    Article  CAS  Google Scholar 

  • Bishop PE, Jorerger RD (1990) Genetics and molecular biology of an alternative nitrogen fixation system. Plant Mol Biol 41:109–125

    CAS  Google Scholar 

  • Bockman OC (1996) Fertilizers and biological nitrogen fixation as sources of plant nutrients: perspectives for future agriculture. Porsgunn, Norsko Hydro, Norwa

    Google Scholar 

  • Bolton H, Elliot LF, Papendick RI, Bezdicek DF (1985) Soil microbial biomass and selected soil enzymes activities: effect of fertilization and cropping practices. Soil Biol Biochem 17:297–302

    Article  CAS  Google Scholar 

  • Brait JF (1992) Iron assimilation and storage in prokeryotes. J Gen Microbiol 138:2475–2478

    Article  Google Scholar 

  • Brennan JP, Sykes JD, Scott JF (2004) Trends in pulse and oilseed crops in winter cereal rotations in NSW, economic research report No. 26. NSW Department of Primary Industries, Wagga

    Google Scholar 

  • Bultreys A, Gheysen I, Maraite H, Hoffman E (2001) Characterization of fluorescent and non-fluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identification. Appl Environ Microbiol 67:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and possible role in microbial ecology. Soil Biol Biochem 14:423–427

    Article  CAS  Google Scholar 

  • Buyer JS, Leong J (1986) Iron transport-mediated antagonism between plant growth promoting and plant-deleterious Pseudomonas strains. J Biol Chem 261:791–794

    CAS  PubMed  Google Scholar 

  • Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: A review. Pedobiologia (Jena) 49:637–644

    Article  CAS  Google Scholar 

  • Cecile W, Philippe D (2004) Bacterial iron sources: From siderophores to Hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  Google Scholar 

  • Chander K, Brookes PC (1991) Microbial biomass dynamics during the decomposition of glucose and maize in metal-contaminated and non-contaminated soils. Soil Biol Biochem 23:917–925

    Article  CAS  Google Scholar 

  • Chang HB, Lin CW, Huang HJ (2005) Zinc induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regul 46:261–266

    Article  CAS  Google Scholar 

  • Choudhary M, Datta A, Jat HS, Yadav AK, Gathala KM, Tek BS, Das AK, Parbodh CS, Mangi LJ, Rajbir S, Jagdish KL (2018) Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma 313:193–204

    Article  CAS  Google Scholar 

  • Christos G, Joanna MC, Liz JS (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  Google Scholar 

  • Clarke TE, Tari LW, Vogel HJ (2001) Structural biology of bacterial iron uptake systems. Curr Top Med Chem 1:7–30

    Article  CAS  PubMed  Google Scholar 

  • Condron LM, Turner B, Cade-Menun BJ (2005) Chemistry and dynamics of soil organic phosphorus. In: Sims T, Sharpley AN (eds) Phosphorus: agriculture and the environment. Madison: American Society of Agronomy

    Google Scholar 

  • Corstanje R, Schulin R, Lark R (2007) Scale dependent relationships between soil organic matter and urease activity. Eur J Soil Sci 58(5):1087–1095

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1967) Metabolism of organic phosphates in soil. In: McLaren AD, Peterson GH (eds.) Soil Biochem 1 New York, USA7 Marcel Dekker

    Google Scholar 

  • Cosgrove DJ (1980) Inositol phosphates: their chemistry, biochemistry and physiology. Elsevier, Amsterdam

    Google Scholar 

  • Craine J, Fierer N, McLauchlan K, Elmore A (2013) Reduction of the temperature sensitivity of soil organic matter decomposition with sustained temperature increase. Biogeochemistry 113:359–368

    Article  CAS  Google Scholar 

  • Daniel J, O’Sullivan R, Fergal O (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    Google Scholar 

  • Daryanto S, Lixin W, Pierre AJ (2016) Global synthesis of drought effects on cereal, legume, tuber 1 and root crops production: a review in agricultural water management. Agric Water Manag 179:18. https://doi.org/10.1016/j.agwat.2016.04.022

    Article  Google Scholar 

  • Das SK and Varma A (2011) Role of enzymes in maintaining soil health, soil enzymology, soil biology, vol 22. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-14225-3_2

    Chapter  Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834

    Google Scholar 

  • Dick RP (1994) Soil enzyme activity as an indicator of soil quality. In: Doran JW (ed) Defining soil quality for a sustainable environment. Soil Science Society of America, Madison, pp 107–124

    Google Scholar 

  • Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Biological indicators of soil health, 1st edn. CAB International, New York

    Google Scholar 

  • Dick WA, Tabatabai MA (1983) Activation of soil pyrophosphatase by metal ions. Soil Biol Biochem 15:59–363

    Article  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Defining soil quality for a sustainable environment. Soil Science Society of America, Special Publication 35. SSSA-ASA, Madison

    Google Scholar 

  • Eilers KG, Lauber CL, Knight R, Fierer N (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42:896–903

    Article  CAS  Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects. J Soil Sci Plant Nutr 17(4):897–911

    Article  CAS  Google Scholar 

  • Frankenberger WT, Tabatabai MA (1982) Amidase and urease activities in plants. Plant Soil 64:153–166

    Article  CAS  Google Scholar 

  • Gao B, Ju X, Su F, Gao F, Cao Q (2013) Comparison of soil respiration in typical conventional and new alternative cereal cropping systems on the North China Plain. PLoS One 8(11):e80887. https://doi.org/10.1371/journal.pone.0080887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelsomino A, Badalucco L, Landi L, Cacco G (2006) Soil carbon, nitrogen and phosphorus dynamics as affected by solarization alone or combined with organic amendment. Plant Soil 279:307–325

    Article  CAS  Google Scholar 

  • Geoffrey AB, James TJ (2006) Forage economics. Department of agricultural and resource Economics, College of Agriculture and Life Sciences

    Google Scholar 

  • Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13:247–261

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gopinath KA, Saha S, Mina BL, Pande H, Srivastva AK, Gupta HS (2009) Bell pepper yield and soil properties during conversion from conventional to organic production in Indian Himalayas. Sci Hortic 122:339–345

    Article  CAS  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurmani AR, Khan SU, Andaleep R, Waseem K, Khan A (2012) Soil application of zinc improves growth and yield of tomato. Int J Agric Biol 14:91–96

    CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pak J Agric Sci 52:915–922

    Google Scholar 

  • Islam F, Roy N (2018) Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11:445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joachim HJ, Patrick AN (2008) Selected soil enzymes: examples of their potential roles in the ecosystem. Afr J Biotechnol 7:181–191

    Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing Bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593. https://doi.org/10.3389/fmicb.2017.02593

  • Kertesz MA, Mirleau P (2004) The role of microbes in plant sulphur supply. J Exp Bot 55:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Kizilkaya R, Dengiz O (2010) Variation of land use and land cover effects on some soil physico-chemical characteristics and soil enzyme activity. Zemdirbyste-Agriculture 97:15–24

    Google Scholar 

  • Kleman-Leyer KM, Siika-Aho M, Teeri TT, Kirk TK (1996) The Cellulases, endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl Environ Microbiol 62:2883–2887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klose S, Moore JM, Tabatabai MA (1999) Arylsulphatase activity of microbial biomass in soils as affected by cropping systems. Biol Fertil Soils 29:46–54

    Article  CAS  Google Scholar 

  • Krupinsky JM, Bailey KL, McMullen MP, Gossen BD, Turkington TK (2002) Managing plant disease risk in diversified cropping systems. Agron J 94:198–209

    Article  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Research, Sage-Hindawi Access to Research

    Article  CAS  Google Scholar 

  • Lemenceau P, Bakker PAHM, De-Kogel WJ, Alabouvette C, Schippers B (1993) Antagonistic effect on nonpathogenic Fusarium oxysporum strain Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f.sp.dianthi. Appl Environ Microbiol 59:74–82

    Google Scholar 

  • Li Y, Guohua M, Fanjun C, Jianhua Z, Fusuo Z (2004) Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting p efficiency at low p availability. Plant Sci 167:217–223

    Article  CAS  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Lupwayi NZ, Soon YK (2016) Soil microbial properties during decomposition of pulse crop and legume green manure residues in three consecutive subsequent crops. Can J Soil Sci 96:413–426

    Article  CAS  Google Scholar 

  • Maharana JK, Patel AK (2013) Microbial biomass, microbial respiration and organic carbon indicates nutrient cycling in a chrono-sequence coal mine overburden spoil. Int J Environ Sci 4:171–184

    Google Scholar 

  • Makoi J, Ndakidemi P (2008) Selected soil enzymes: examples of their potential. Roles in the ecosystem. Afr J Biotechnol 7:181–191

    CAS  Google Scholar 

  • Malezieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. Agron Sus Develop 29:43–62

    Article  Google Scholar 

  • Margalef O, Sardans J, Fernández-Martínez M, Molowny-Horas R, Janssens IA, Ciais P, Goll D, Richter A, Obersteiner M, Asensio D, Peñuelas J (2017) Global patterns of phosphatase activity in natural soils. Sci Rep 7(1):1337. https://doi.org/10.1038/s41598-017-01418-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Salgado MM, Gutierrez-Romero V, Jannsens M, Ortega-Blu R (2010) Biological soil quality indicators: a review. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz

    Google Scholar 

  • Masepohl B, Klipp W (1996) Organization and regulation of genes encoding the molybdenum nitrogenase and alternative nitrogenase in Rhodobacter capsulatus. Arch Microbiol 165:80–90

    Article  CAS  Google Scholar 

  • McCarthy GW, Siddaramappa R, Reight RJ, Coddling EE, Gao G (1994) Evaluation of coal combustion by-products as soil liming materials: their influence on soil pH and enzyme activities. Biol Fertil Soils 17:167–172

    Article  Google Scholar 

  • McDaniel MD, Grandy AS (2016) Soil microbial biomass and function are altered by 12 years of crop rotation. Soil 2:583–599

    Article  CAS  Google Scholar 

  • McDaniel MD, Grandy AS, Tiemann LK, Weintraub MN (2014) Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biol Biochem 78:243–254

    Article  CAS  Google Scholar 

  • McGill WB, Colle CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Meena RS (2016) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi

    Book  Google Scholar 

  • Meng QF, Sun QP, Chen XP, Cui ZL, Yue SC (2012) Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric Ecosyst Environ 146:93–102

    Article  Google Scholar 

  • Moores JC, Magazin M, Ditta GS, Leong J (1984) Cloning of genes involved in the biosynthesis of pseudobactin, a high-affinity iron transport agent of a plant growth-promoting Pseudomonas strain. J Bacteriol 157:53–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer G, Stams A (2008) The ecology and biotechnology of sulphate reducing bacteria. Nat Rev Microbiol 6:441–454

    Article  CAS  Google Scholar 

  • Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Ndakidemi PA (2006) Manipulating legume/cereal mixtures to optimize the above and below ground interactions in the traditional African cropping systems. Afr J Biotechnol 5:2526–2533

    Google Scholar 

  • Nicholls RG, Roy AR (1971) Arylsulfatase. In: Boyer PD (ed) The enzymes, vol 5, 3rd edn. Academic, New York

    Google Scholar 

  • Norris CE, Congreves KA (2018) Alternative management practices improve soil health indices in intensive vegetable cropping systems. Front Environ Sci 6:50. https://doi.org/10.3389/fenvs.2018.00050

    Article  Google Scholar 

  • Nutt A (2006) Hydrolytic and oxidative mechanisms involved in cellulose degradation. Digital Comprehensive Summaries of Uppsala dissertations from the Faculty of Science and Technology, p 185

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas sp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Owa N (2006) The fundamentals of fertilization. In: Owa N, Kimura M, Koshino M, Saigusa M, Tadano T, Hasegawa I, Yoshiba M (eds) Encyclopedia of fertilizers. Asakura Publishing, Tokyo, pp 207–212

    Google Scholar 

  • Pankhurst CEBM, Doube VV, Gupta SR (1997) Biological indicators of soil health: synthesis. In: Pankhurst et al (eds) Biological indicators of soil health. CAB International Publications, Wallingford, pp 419–435

    Google Scholar 

  • Parihar CM, Jat SL, Singh AK, Datta A, Parihar MD, Varghese E, Bandyopadhyay KK, Nayak HS, Kuri BR, Jat ML (2018) Changes in carbon pools and biological activities of a sandy loam soil under medium-term conservation agriculture and diversified cropping systems. Eur J Soil Sci 69:902. https://doi.org/10.1111/ejss.12680

    Article  CAS  Google Scholar 

  • Parkin TB, Doran JW, Vizcaino EF (1996) Field and laboratory tests of soil respiration. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality, SSSA special publication 49. SSSA, Madison, pp 231–246

    Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: Molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Pettit NM, Smith ARJ, Freedman RB, Burns RG (1976) Soil urease: activity, stability and kinetic properties. Soil Biol Biochem 8:479–484

    Article  CAS  Google Scholar 

  • Pitchel JR, Hayes JM (1990) Influence of fly ash on soil microbial activity and populations. J Environ Qual 19:593–597

    Google Scholar 

  • Powlson DS, Brookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides earlier indication of changes in soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164

    Article  CAS  Google Scholar 

  • Prosser JI (1989) Autotrophic nitrification in bacteria. In: Rose AH, Tempest DW (eds) Advances in microbial physiology. Academic, San Diego, pp 125–181

    Google Scholar 

  • Rai PK, Ra A, Singh S (2018) Change in soil microbial biomass along a rural-urban gradient in Varanasi (U.P., India). Geol Ecol Landsc 2:15–21

    Article  Google Scholar 

  • Riedell WE, Pikul JL, Jaradat AA, Schumacher TE (2009) Crop rotation and nitrogen input effects on soil fertility, maize mineral nutrition, yield, and seed composition. Agron J 101:870–879

    Article  CAS  Google Scholar 

  • Roldan AJR, Garcıa S, Alguacil MM, Caravaca F (2005) Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl Soil Ecol 30:11–20

    Article  Google Scholar 

  • Sadhu S, Saha P, Sen K, Mayilraj S, Maiti TK (2013) Production, purification and characterization of a novel thermo-tolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. Springerplus 2(10):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha S, Ved P, Samaresh K, Narendra K, Banshi LM (2008) Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in N-W Himalaya. Eur J Soil Biol 44:309–315

    Article  CAS  Google Scholar 

  • Saharan K, Sarma MVRK, Smiejan-Roesti A, Prakash A, Johri BN, Aragno M, Sahai V, Bisaria VS (2010) Cell Growth and metabolites produced by fluorescent pseudomonad r62 in modified chemically defined medium. Eng Technol 67:867–871

    Google Scholar 

  • Sarathchandra SU, Perrott KW (1981) Determination of phosphatase and arylsulphatase activity insoils. Soil Biol Biochem 13:543–545

    Article  CAS  Google Scholar 

  • Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilization and their role on plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 47–63

    Chapter  Google Scholar 

  • Sarwar MH, Sarwar MF, Sarwar M, Qadri NA, Mughal S (2013) The importance of cereals (Poaceae: Gramineae) nutrition in human health. J Cereals Oilseeds 4:32–35

    Article  Google Scholar 

  • Saviozzi A, Levi-Minzi R, Cardelli R, Riffaldi R (2001) A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant Soil 233:251–259

    Article  CAS  Google Scholar 

  • Sbartai H, Djebar M, Rouabhi R, Sbartai I, Berrebbah H (2011) Antioxidative response in tomato plants Lycopersicon esculentum L. roots and leaves to zinc. Am Eurasian J Toxicol Sci 3:41–46

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schloter M, Paolo S, Søren NJS, Jan DE (2018) Microbial indicators for soil quality. Biol Fertil Soils 54:1–10

    Article  CAS  Google Scholar 

  • Shukla MK, Lal R, Ebinger M (2006) Determining soil quality indicators by factor analysis. Soil Tillage Res 87:194–204

    Article  Google Scholar 

  • Singh KK, Rathi KS (2003) Dry matter production and productivity as influenced by staggered sowing of mustard intercropped at different row ratios of chickpea. J Agron Crop Sci 189:169–175

    Article  Google Scholar 

  • Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338:499–500

    Article  Google Scholar 

  • Singh KK, Ali M, Venkatesh MS (2009) Pulses in cropping systems, Technical bulletin. IIPR, Kanpur

    Google Scholar 

  • Singh BK, Tate K, Thomas N, Ross D, Singh J (2011) Differential effect of afforestation on nitrogen-fixing and denitrifying communities and potential implications for nitrogen cycling. Soil Biol Biochem 43:1426–1433

    Article  CAS  Google Scholar 

  • Singh KM, Meena MS, Kumar A (2012) An economic view to forage and fodder production in eastern India. https://doi.org/10.2139/ssrn.2030697

  • Skujins J (1978) History of abiotic soil enzyme research. In: Burns RG (1978)

    Google Scholar 

  • Slayman CW, Tatum EL (1964) Potassium transport in Neurospora intracellular sodium and potassium concentrations and cation requirements for growth. Biochim Biophys Acta 88:578–592

    CAS  PubMed  Google Scholar 

  • Smith JL, Paul EA (1990) Significance of soil microbial biomass estimates in soil. Biochemist 6:357–396

    CAS  Google Scholar 

  • Smith RG, Gross KL, Robertson GP (2008) Effects of crop diversity on agro-ecosystem function: Crop yield response. Ecosystems 11:355–366

    Article  Google Scholar 

  • Sparks DL (2011) Bioavailability of soil potassium. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil science: resource management and environmental impacts, 2nd edn. CRC Press, Boca Raton/London/New York, pp 11-37–11-47

    Google Scholar 

  • Srinivasa RC, Minakshi G, Sumanta K, Susheelendra D (2011) Soil enzyme. encyclopedia of soil science, 3rd edn. https://doi.org/10.1081/E-ESS3-120052906

    Chapter  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  • Sun J, Zou L, Li W, Wang Y, Xia Q, Peng M (2018) Soil microbial and chemical properties influenced by continuous cropping. Sci Agric 75:420–425

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1970) Arylsulphatase activity of soils. Soil Sci Soc Am J 34:225–229

    Article  CAS  Google Scholar 

  • Tang X, Bernard L, Brauman A, Daufresne T, Deleporte P, Desclaux D, Souche G, Placella SA, Hinsinger P (2014) Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biol Biochem 75:86–93

    Article  CAS  Google Scholar 

  • Tao J, Griffiths B, Zhang S, Chen X, Liu M, Hu F, Li H (2009) Effects of earthworms on soil enzyme activity in an Selenium- Soil enzymes organic residue amended rice–wheat rotation agro-ecosystem. Appl Soil Ecol 42:221–226

    Article  Google Scholar 

  • Tarafdar JC, Chhonkar PK (1979) Phosphatase production by microorganisms isolated from diverse types of soils. Zen Bac Natur 134:119–124

    CAS  Google Scholar 

  • Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, Hofmockel KS, Lennon JT, Levine UY, MacGregor BJ, Pett-Ridge J (2011) Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109:7–18

    Article  CAS  Google Scholar 

  • Turner B, Haygarth P (2005) Phophatase activity in temperate pasture soils: potential regulation of labile organic phosphorous turnover by phosphodiesterase activity. Sci Total Environ 344:37–46

    Article  CAS  Google Scholar 

  • Uozumi N (2011) Research on transporters and its impact on the fields of soil science, fertilizers and plant nutrition. Na tolerance and Na circulation in plants. J Soil Sci Plant Nutr 82:65–69

    CAS  Google Scholar 

  • Ushasri K, Sivaragini P, Vijayalakshmi K (2013) Isolation, characterization of phytase producing Bacillus sps NBtRS6 from the rhizospere soil of NBt cotton field. Int J Curr Microbiol App Sci 2:142–149

    CAS  Google Scholar 

  • Utobo, Tewari (2014) Soil enzymes as bio-indicators of soil ecosystem status. Appl Ecol Environ Res 13:147–169

    Google Scholar 

  • Venkatesh MS, Hazra KK, Ghosh PK, Praharaj CS, Kumar N (2013) Long-term effect of pulses and nutrient management on soil carbon sequestration in Indo-Gangetic plains of India. Can J Soil Sci 93:127–136

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Walls TD (2000) Dehydrogenase activity in soil bacteria. http://www.gardenguides.com/130633-dehydrogenase-activity-soil-bacteria.html

  • Wang B, Liu GB, Xue S, Zhu BB (2011) Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environ Earth Sci 62:915–925

    Article  CAS  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358

    Article  Google Scholar 

  • Wardle DA (1999) Is “sampling effect” a problem for experiments investigating biodiversity-ecosystem function relationships. Oikos 87:403–407

    Article  Google Scholar 

  • Weir BS, Turner SJ, Silvester WB, Park DC, Young JM (2004) Un-expectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol 70:5980–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 2008(1125):289–297

    Article  CAS  Google Scholar 

  • Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14:1–5

    Article  CAS  Google Scholar 

  • Yadav RS, Tarafdar JC (2001) Influence of organic and inorganic phosphorous supply on the maximum secretion of acid phosphatase by plants. Biol Fertil Soils 34:140–143

    Article  CAS  Google Scholar 

  • Yamashita K, Hiroki H, Mizuhiko N, Makoto K, Susumu A (2014) Estimation of microbial biomass potassium in paddy field soil. Soil Sci Plant Nutr 60:512–519

    Article  Google Scholar 

  • Yang YZ, Liu S, Zheng D, Feng S (2006) Effects of Cadium, Zinc and Lead on soil enzyme activities. J Environ Sci 18:1135–1141

    Article  Google Scholar 

  • Zantua MI, Bremner JM (1977) Stability of urease in soils. Soil Biol Biochem 9:135–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saharan, K., Singh, U., Kumawat, K.C., Praharaj, C.S. (2019). Cropping Systems Effect on Soil Biological Health and Sustainability. In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_11

Download citation

Publish with us

Policies and ethics