Skip to main content

Graphene-Based Nanomaterials for Hydrogen Storage

  • Chapter
  • First Online:
  • 715 Accesses

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Graphene, which was discovered in the last ten years, has attracted considerable attention in the field of material science and has been one of the most important materials. Graphene has a two-dimensional structure, and this structure gives the structural, electronic, and optical properties characteristic of the graphene. Thanks to these characteristics, many graphene-based materials have been synthesized for use in many potential applications, such as electronics, energy storage, catalysis, gas absorption, separation, and detection. The function, surface area and porosity, adjustable for energy-based materials and stable graphene are of great importance to these applications. The most important feature that makes the graphene a very useful nanoparticle is its electronic feature. Also, graphene is used as an electrode in solar cells with unprecedented transparency and conductivity. Moreover, a certain amount of graphene can store energy. In this chapter, we outline the structure, properties of graphene, and developments in energy storage systems, and graphene-based hydrogen storage systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abergel, D.S.L., Apalkov, V., Berashevich, J., et al.: Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010)

    Article  CAS  Google Scholar 

  2. Abrahamson, J.T., Sen, F., Sempere, B., et al.: Excess thermopower and the theory of thermopower waves. ACS Nano 7(8), 6533–6544 (2013)

    Article  CAS  Google Scholar 

  3. Aday, B., Pamuk, H., Kaya, M., et al.: Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol. 16, 6498–6504 (2016)

    Article  CAS  Google Scholar 

  4. Aday, B., Yildiz, Y., Ulus, R., et al.: One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J. Chem. 40, 748–754 (2016)

    Article  CAS  Google Scholar 

  5. Akocak, S., Sen, B., Lolak, N., et al.: One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct. Nano-Objects 11, 25–31 (2017)

    Article  CAS  Google Scholar 

  6. Alizadeh, T., Zare, M., Ganjali, M.R., et al.: A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens. Bioelectron. 25, 1166–1172 (2010)

    Article  CAS  Google Scholar 

  7. Anderson, R., McNicholas, T.P., Kleinhammes, A., et al.: NMR methods for characterizing the pore structures and hydrogen storage properties of microporous carbons. J. Am. Chem. Soc. 132, 8618 (2010)

    Article  CAS  Google Scholar 

  8. Ao, Z.M., Jiang, Q., Zhang, R.Q., et al.: Al doped graphene: a promising material for hydrogen storage at room temperature. J. Appl. Phys. 105, 074307 (2009)

    Article  CAS  Google Scholar 

  9. Ayranci, R., Baskaya, G., Guzel, M., et al.: Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: a comparative investigation. Nano-Struct. Nano-Objects 11, 13–19 (2017)

    Article  CAS  Google Scholar 

  10. Ayranci, R., Baskaya, G., Guzel, M., et al.: Carbon-based nanomaterials for high-performance optoelectrochemical systems. ChemistrySelect 2(4), 1548–1555 (2017)

    Article  CAS  Google Scholar 

  11. Balog, R., Jorgensen, B., Wells, J., et al.: Atomic hydrogen adsorbate structures on graphene. J. Am. Chem. Soc. 131, 8744–8745 (2009)

    Article  CAS  Google Scholar 

  12. Bai, H., Li, C., Shi, G.: Functional composite materials based on chemically converted graphene. Adv. Mater. 23, 1089–1115 (2011)

    Article  CAS  Google Scholar 

  13. Bai, S., Shen, X.: Graphene-inorganic nanocomposites. RSC Adv. 2, 64–98 (2012)

    Article  CAS  Google Scholar 

  14. Balandin, A.A., Ghosh, S., Bao, W., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  CAS  Google Scholar 

  15. Baskaya, G., Esirden, I., Erken, E., et al.: Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J. Nanosci. Nanotechnol. 17, 1992–1999 (2017)

    Article  CAS  Google Scholar 

  16. Baskaya, G., Yıldız, Y., Savk, A., et al.: Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron. 91, 728–733 (2017)

    Article  CAS  Google Scholar 

  17. Basu, S., Bhattacharyya, P.: Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)

    Article  CAS  Google Scholar 

  18. Bolotin, K.I., Sikes, K.J., Jiang, Z., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  CAS  Google Scholar 

  19. Bonaccorso, F., Sun, Z., Hasan, T., et al.: Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010)

    Article  CAS  Google Scholar 

  20. Booth, T.J., Blake, P., Nair, R.R., et al.: Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8, 2442–2446 (2008)

    Article  CAS  Google Scholar 

  21. Bozkurt, S., Tosun, B., Sen, B., et al.: A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal. Chim. Acta 989C, 88–94 (2017)

    Article  CAS  Google Scholar 

  22. Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R Soc. 149, 249–259 (1859)

    Article  Google Scholar 

  23. Burress, J.W., Gadipelli, S., Ford, J., et al.: Graphene oxide framework materials: theoretical predictions and experimental results. Angew. Chem. Int. Ed. 49, 8902 (2010)

    Article  CAS  Google Scholar 

  24. Celik, B., Baskaya, G., Karatepe, O., et al.: Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int. J. Hydrogen Energy 41, 5661–5669 (2016)

    Article  CAS  Google Scholar 

  25. Celik, B., Erken, E., Eris, S., et al.: Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catal. Sci. Technol. 6, 1685–1692 (2016)

    Article  CAS  Google Scholar 

  26. Celik, B., Kuzu, S., Erken, E., et al.: Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int. J. Hydrogen Energy 41, 3093–3101 (2016)

    Article  CAS  Google Scholar 

  27. Celik, B., Yildiz, Y., Erken, E., et al.: Monodisperse palladium-cobalt alloy nanoparticles assembled on poly (N-vinyl-pyrrolidone) (PVP) as highly effective catalyst for the dimethylamine borane (DMAB) dehydrocoupling. RSC Adv. 6, 24097–24102 (2016)

    Article  CAS  Google Scholar 

  28. Chae, H.K., Siberio-Perez, D.Y., Kim, J., et al.: A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)

    Article  CAS  Google Scholar 

  29. Chen, D., Feng, H., Li, J.: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)

    Article  CAS  Google Scholar 

  30. Chen, L., Hernandez, Y., Feng, X., et al.: From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)

    Article  CAS  Google Scholar 

  31. Chen, Y., Zhang, B., Liu, G., et al.: Graphene and its derivatives: switching ON and OFF. Chem. Soc. Rev. 41, 4688–4707 (2012)

    Article  CAS  Google Scholar 

  32. Choi, H.J., Jung, S.M., Seo, J.M., et al.: Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1, 534–551 (2012)

    Article  CAS  Google Scholar 

  33. Dai, L., Chang, D.W., Baek, J.B., et al.: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)

    Article  CAS  Google Scholar 

  34. Dasdelen, Z., Yıldız, Y., Eris, S., et al.: Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybrid material for methanol oxidation reaction. Appl. Catal. B 219C, 511–516 (2017)

    Article  CAS  Google Scholar 

  35. Demirci, T., Celik, B., Yıldız, Y., et al.: One-pot synthesis of Hantzsch dihydropyridines using highly efficient and stable PdRuNi@GO catalyst. RSC Adv. 6, 76948–76956 (2016)

    Article  CAS  Google Scholar 

  36. Demir, E., Savk, A., Sen, B., et al.: A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Struct. Nano-Objects 12, 41–45 (2017)

    Article  CAS  Google Scholar 

  37. Demir, E., Sen, B., Sen, F.: Highly efficient nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nano-Struct. Nano-Objects 11, 39–45 (2017)

    Article  CAS  Google Scholar 

  38. Dreyer, D.R., Ruoff, R.S., Bielawski, C.W.: From conception to realization: an historial account of graphene and some perspectives for its future. Angew. Chem. Int. Ed. 51, 7640–7654 (2012)

    Article  CAS  Google Scholar 

  39. Dong, L.X., Chen, Q.: Properties, synthesis, and characterization of graphene. Front. Mater. Sci. China 4, 45–51 (2010)

    Article  Google Scholar 

  40. Du, X., Skachko, I., Barker, A., et al.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)

    Article  CAS  Google Scholar 

  41. Eda, G., Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010)

    Article  CAS  Google Scholar 

  42. Erken, E., Esirden, I., Kaya, M., et al.: A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv. 5, 68558–68564 (2015)

    Article  CAS  Google Scholar 

  43. Erken, E., Pamuk, H., Karatepe, O., et al.: New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 alcohol oxidation and the room temperature dehydrocoupling of dimethylamine-borane (DMAB). J. Cluster Sci. 27, 9–23 (2016)

    Article  CAS  Google Scholar 

  44. Erken, E., Yildiz, Y., Kilbas, B., et al.: Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5944–5950 (2016)

    Article  CAS  Google Scholar 

  45. Eris, S., Dasdelen, Z., Sen, F., et al.: Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation. Int. J. Hydrogen Energy 43(1), 385–390 (2018)

    Article  CAS  Google Scholar 

  46. Eris, S., Dasdelen, Z., Sen, F.: Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J. Colloid Interface Sci. 513, 767–773 (2018)

    Article  CAS  Google Scholar 

  47. Eris, S., Dasdelen, Z., Yildiz, Y., et al.: Nanostructured polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int. J. Hydrogen Energy 43(3), 1337–1343 (2018)

    Article  CAS  Google Scholar 

  48. Esirden, I., Erken, E., Kaya, M., et al.: Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal. Sci. Technol. 5, 4452–4457 (2015)

    Article  CAS  Google Scholar 

  49. Fuel Cell Technologies Office Department of Energy: A Multiyear Plan for the Hydrogen R&D Program. https://www.energy.gov (1999)

  50. Gadipelli, S., Guo, Z.X.: Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015)

    Article  CAS  Google Scholar 

  51. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  52. Georgakilas, V., Otyepka, M., Bourlinos, A.B., et al.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)

    Article  CAS  Google Scholar 

  53. Giraldo, J.P., Landry, M.P., Faltermeier, S.M., et al.: A nanobionic approach to augment plant photosynthesis and biochemical sensing using targeted nanoparticles. Nat. Mater. 13, 400–408 (2014)

    Article  CAS  Google Scholar 

  54. Goksu, H., Celik, B., Yildiz, Y., et al.: Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in an aqueous medium. ChemistrySelect 1(10), 2366–2372 (2016)

    Article  CAS  Google Scholar 

  55. Goksu, H., Kilbas, B., Sen, F.: Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem. 21(9), 794–820 (2017)

    Article  CAS  Google Scholar 

  56. Goksu, H., Yildiz, Y., Celik, B., et al.: Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of reduced graphene oxide furnished platinum nanocatalyst. Catal. Sci. Technol. 6, 2318–2324 (2016)

    Article  CAS  Google Scholar 

  57. Goksu, H., Yildiz, Y., Celik, B., et al.: Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect 1(5), 953–958 (2016)

    Article  CAS  Google Scholar 

  58. Goksu, H., Zengin, N., Karaosman, N., et al.: Highly active and reusable Pd/AlO(OH) nanoparticles for the Suzuki cross-coupling reaction. Curr. Organocatal. 5, 1–8 (2018)

    Article  CAS  Google Scholar 

  59. Gulcin, I., Taslimi, P., Aygün, A., et al.: Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 119, 741–746 (2018)

    Article  CAS  Google Scholar 

  60. Gunbatar, S., Aygun, A., Karataş, Y., et al.: Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2018.06.100

    Article  CAS  Google Scholar 

  61. Hou, J., Yang, C., Cheng, H., et al.: Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys. Chem. Chem. Phys. 15, 15660 (2013)

    Article  CAS  Google Scholar 

  62. Huang, X., Qi, X., Boey, F., et al.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    Article  CAS  Google Scholar 

  63. Huang, X., Yin, Z., Wu, S., et al.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)

    Article  CAS  Google Scholar 

  64. Huang, X., Zeng, Z., Fan, Z., et al.: Graphene-based electrodes. Adv. Mater. 24, 5979–6004 (2012)

    Article  CAS  Google Scholar 

  65. Iverson, N.M., Barone, P.W., Sen, F., et al.: In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 11, 873–880 (2013)

    Article  CAS  Google Scholar 

  66. Jiang, Z., Henriksen, E., Tung, L., et al.: Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98, 197403 (2007)

    Article  CAS  Google Scholar 

  67. Jiao, L., Zhang, L., Wang, X., et al.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    Article  CAS  Google Scholar 

  68. Karatepe, O., Yildiz, Y., Pamuk, H., et al.: Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Adv. 6, 50851–50857 (2016)

    Article  CAS  Google Scholar 

  69. Kim, G., Jhi, S.H., Park, N., et al.: Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Phys. Rev. B: Condens. Matter 78, 085408 (2008)

    Article  CAS  Google Scholar 

  70. Kim, K., Choi, J.Y., Kim, T., et al.: A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011)

    Article  CAS  Google Scholar 

  71. Koskun, Y., Şavk, A., Şen, B., et al.: Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta 1010, 37–43 (2018)

    Article  CAS  Google Scholar 

  72. Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., et al.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  CAS  Google Scholar 

  73. Kuila, T., Bose, S., Mishra, A.K., et al.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012)

    Article  CAS  Google Scholar 

  74. Kwon, S.Y., Ciobanu, C.V., Petrova, V., et al.: Growth of semiconducting graphene on palladium. Nano Lett. 9, 3985–3990 (2009)

    Article  CAS  Google Scholar 

  75. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  CAS  Google Scholar 

  76. Li, J.R., Kuppler, R.J., Zhou, H.C.: Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  CAS  Google Scholar 

  77. Liu, J., Cao, G., Yang, Z., et al.: Oriented nanostructures for energy conversion and storage. Chemsuschem 1, 676–697 (2008)

    Article  CAS  Google Scholar 

  78. Liu, C., Li, F., Ma, L.P., Cheng, H.M.: Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)

    Article  CAS  Google Scholar 

  79. Lueking, A.D., Gutierrez, H.R., Fenseca, D.A., et al.: Combined hydrogen production and storage with subsequent carbon crystallization. J. Am. Chem. Soc. 128, 7758 (2006)

    Article  CAS  Google Scholar 

  80. Luo, B., Liu, S., Zhi, L.: Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8, 630–646 (2012)

    Article  CAS  Google Scholar 

  81. Machado, B.F., Serp, P.: Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012)

    Article  CAS  Google Scholar 

  82. Malig, J., Jux, N., Guldi, D.M.: Toward multifunctional wet chemically functionalized graphene-integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity. Acc. Chem. Res. 46, 53–64 (2013)

    Article  CAS  Google Scholar 

  83. Mao, S., Pu, H., Chen, J.: Graphene oxide and its reduction: modeling and experimental progress. RSC Adv. 2, 2643–2662 (2012)

    Article  CAS  Google Scholar 

  84. Neto, A.H.C., Guinea, F., Peres, N., et al.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  CAS  Google Scholar 

  85. Novoselov, K.S., Falko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  CAS  Google Scholar 

  86. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  87. Novoselov, K.S., Geim, A., Morozov, S.V., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  CAS  Google Scholar 

  88. Pamuk, H., Aday, B., Kaya, M., et al.: Pt Nps@GO as highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Adv. 5, 49295–49300 (2015)

    Article  CAS  Google Scholar 

  89. Park, C., Anderson, P.E., Chambers, A., et al.: Further studies of the interaction of hydrogen with graphite nanofibers. J. Phys. Chem. B 103, 10572–10581 (1999)

    Article  CAS  Google Scholar 

  90. Patchkovskii, S., Tse, J.S., Yurchenko, S.N., et al.: Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA 102, 10439–10444 (2005)

    Article  CAS  Google Scholar 

  91. Pierson, H.O.: Handbook of Carbon, Graphite, Diamond and Fullerenes. New Jersey (1993)

    Google Scholar 

  92. Pumera, M.: Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir 23, 6453–6458 (2007)

    Article  CAS  Google Scholar 

  93. Pumera, M.: The electrochemistry of carbon nanotubes: fundamentals and applications. Chem. Eur. J. 15, 4970–4978 (2009)

    Article  CAS  Google Scholar 

  94. Pumera, M.: Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)

    Article  CAS  Google Scholar 

  95. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7757 (2009)

    Article  CAS  Google Scholar 

  96. Rozhkov, A.V., Giavaras, G., Bliokh, Y.P., et al.: Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011)

    Article  CAS  Google Scholar 

  97. Sahin, B., Aygun, A., Gunduz, H., et al.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B 163, 119–124 (2018)

    Article  CAS  Google Scholar 

  98. Sahin, B., Demir, E., Aygun, A., et al.: Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J. Biotechnol. 260C, 79–83 (2017)

    Article  CAS  Google Scholar 

  99. Sahoo, N.G., Pan, Y., Li, L., et al.: Graphene-based materials for energy conversion. Adv. Mater. 24, 4203–4210 (2012)

    Article  CAS  Google Scholar 

  100. Sarma, S.D., Adam, S., Hwang, E.H., et al.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

    Article  CAS  Google Scholar 

  101. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)

    Article  CAS  Google Scholar 

  102. Sen, B., Akdere, E.H., Savk, A., et al.: A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl. Catal. B 225(5), 148–153 (2018)

    Article  CAS  Google Scholar 

  103. Sen, B., Aygün, A., Onal Okyay, T., et al.: Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrogen Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.03.175

    Article  CAS  Google Scholar 

  104. Sen, B., Demirkan, B., Levent, M., et al.: Silica-based monodisperse PdCo nanohybrids as highly efficient and stable nanocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.07.080

    Article  CAS  Google Scholar 

  105. Sen, B., Demirkan, B., Savk, A., et al.: Trimetallic PdRuNi nanocomposites decorated on graphene oxide: a superior catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 17984–17992 (2018)

    Article  CAS  Google Scholar 

  106. Sen, B., Demirkan, B., Simsek, B., et al.: Monodisperse palladium nanocatalysts for dehydrocoupling of dimethylamineborane. Nano-Struct. Nano-Objects 16, 209–214 (2018)

    Article  CAS  Google Scholar 

  107. Sen, B., Kuyuldar, E., Demirkan, B., et al.: Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J. Colloid Interface Sci. 526, 480–486 (2018)

    Article  CAS  Google Scholar 

  108. Sen, B., Kuzu, S., Demir, E., et al.: Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium-nickel alloy nanoparticles assembled on PEDOT. Int. J. Hydrogen Energy 42(36), 23307–23314 (2017)

    Article  CAS  Google Scholar 

  109. Sen, B., Kuzu, S., Demir, E., et al.: Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine borane. Int. J. Hydrogen Energy 42(36), 23292–23298 (2017)

    Article  CAS  Google Scholar 

  110. Sen, B., Kuzu, S., Demir, E., et al.: Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int. J. Hydrogen Energy 42(36), 23299–23306 (2017)

    Article  CAS  Google Scholar 

  111. Sen, B., Kuzu, S., Demir, E., et al.: Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrogen Energy 42(36), 23276–23283 (2017)

    Article  CAS  Google Scholar 

  112. Sen, B., Kuzu, S., Demir, E., et al.: Polymer-graphene hybrid decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine-borane at room temperature. Int. J. Hydrogen Energy 42(36), 23284–23291 (2017)

    Article  CAS  Google Scholar 

  113. Sen, B., Lolak, N., Paralı, O., et al.: Bimetallic PdRu/graphene oxide based catalysts for the one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Struct. Nano-Objects 12, 33–40 (2017)

    Article  CAS  Google Scholar 

  114. Sen, B., Savk, A., Kuyuldar, E., et al.: Hydrogen liberation from the hydrolytic dehydrogenation of hydrazine borane in acidic media. Int. J. Hydrogen Energy 43, 17978–17983 (2018)

    Article  CAS  Google Scholar 

  115. Sen, B., Savk, A., Sen, F.: Highly efficient monodisperse nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interface Sci. 520, 112–118 (2018)

    Article  CAS  Google Scholar 

  116. Sen, F., Boghossian, A.A., Sen, S., et al.: Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy. ACS Nano 6(12), 10632–10645 (2012)

    Article  CAS  Google Scholar 

  117. Sen, F., Boghossian, A.A., Sen, S., et al.: Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 3(7), 881–893 (2013)

    Article  CAS  Google Scholar 

  118. Sen, F., Gokagac, G.: Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 111, 5715–5720 (2007)

    Article  CAS  Google Scholar 

  119. Sen, F., Gokagac, G., et al.: The activity of carbon supported platinum nanoparticles towards methanol oxidation reaction—the role of the metal precursor and a new surfactant, tert-octanethiol. J. Phys. Chem. C 111, 1467–1473 (2007)

    Article  CAS  Google Scholar 

  120. Sen, F., Gokagac, G.: Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, tert-octanethiol. Energy Fuels 22(3), 1858–1864 (2008)

    Article  CAS  Google Scholar 

  121. Sen, F., Gokagac, G.: Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity. J. Appl. Electrochem. 44(1), 199–207 (2014)

    Article  CAS  Google Scholar 

  122. Sen, F., Ertan, S., Sen, S., et al.: Platinum nanocatalysts prepared with different surfactants for C1 to C3 alcohol oxidations and their surface morphologies by AFM. J. Nanopart. Res. 14, 922–926 (2012)

    Article  CAS  Google Scholar 

  123. Sen, F., Karatas, Y., Gülcan, M., et al.: Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Adv. 4(4), 1526–1531 (2014)

    Article  CAS  Google Scholar 

  124. Sen, F., Ozturk, Z., Sen, S., et al.: The preparation and characterization of nano-sized Pt-Pd alloy catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J. Mater. Sci. 47, 8134–8144 (2012)

    Article  CAS  Google Scholar 

  125. Sen, S., Sen, F., Boghossian, A.A., et al.: The effect of reductive dithiothreitol and trolox on nitric oxide quenching of single-walled carbon nanotubes. J. Phys. Chem. C 117(1), 593–602 (2013)

    Article  CAS  Google Scholar 

  126. Sen, F., Sen, S., Gokagac, G., et al.: Efficiency enhancement in the methanol/ethanol oxidation reactions on Pt nanoparticles prepared by a new surfactant, 1,1-dimethyl heptanethiol, and surface morphology by AFM. Phys. Chem. Chem. Phys. 13, 1676–1684 (2011)

    Article  CAS  Google Scholar 

  127. Sen, S., Sen, F., Gokagac, G.: Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys. Chem. Chem. Phys. 13, 6784–6792 (2011)

    Article  CAS  Google Scholar 

  128. Sen, F., Sen, S., Gokagac, G.: High-performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. J. Nanopart. Res. 15, 1979 (2013)

    Article  CAS  Google Scholar 

  129. Sen, F., Ulissi, Z.W., Gong, X., et al.: Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett. 14(8), 4887–4894 (2014)

    Article  CAS  Google Scholar 

  130. Shang, N.G., Papakonstantinou, P., McMullan, M., et al.: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506–3514 (2008)

    Article  CAS  Google Scholar 

  131. Shao, Y., Wang, J., Wu, H., et al.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010)

    Article  CAS  Google Scholar 

  132. Singh, V., Joung, D., Zhai, L., et al.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)

    Article  CAS  Google Scholar 

  133. Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272 (1958)

    Article  CAS  Google Scholar 

  134. Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010)

    Article  CAS  Google Scholar 

  135. Soodchomshom, B.: Switching effect in a gapped graphene d-wave superconductor structure. Phys. B 405, 1383–1387 (2010)

    Article  CAS  Google Scholar 

  136. Sun, Z., James, D.K., Tour, J.M.: Graphene chemistry: synthesis and manipulation. J. Phys. Chem. Lett. 2, 2425–2432 (2011)

    Article  CAS  Google Scholar 

  137. Stoller, M.D., Park, S., Zhu, Y., et al.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  CAS  Google Scholar 

  138. Thayer, A.M.: Anticipating new commercial applications, producers increase capacity. Chem. Eng. News 85, 29–35 (2007)

    Article  Google Scholar 

  139. Terrones, M., Botello-Mendez, A.R., Campos-Delgado, J., et al.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010)

    Article  CAS  Google Scholar 

  140. Wang, H., et al.: Three dimensional graphene based materials: synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface. Sci. 221, 41–59 (2015)

    Article  CAS  Google Scholar 

  141. Wang, H., Maiyalagan, T., Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)

    Article  CAS  Google Scholar 

  142. Wang, L., Lee, K., Sun, Y.Y., et al.: Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3, 2995–3000 (2009)

    Article  CAS  Google Scholar 

  143. Wang, Y., Wang, K., Guan, C., et al.: Surface functionalization-enhanced spillover effect on hydrogen storage of Ni–B nanoalloy-doped activated carbon. Int. J. Hydrogen Energy 36, 13663–13668 (2011)

    Article  CAS  Google Scholar 

  144. Wei, D., Liu, Y.: Controllable synthesis of graphene and its applications. Adv. Mater. 22, 3225–3241 (2010)

    Article  CAS  Google Scholar 

  145. Wei, W., Qu, X.: Extraordinary physical properties of functionalized graphene. Small 8, 2138–2151 (2012)

    Article  CAS  Google Scholar 

  146. Weiss, N.O., Zhou, H., Liao, L., et al.: Graphene: an emerging electronic material. Adv. Mater. 24, 5782–5825 (2012)

    Article  CAS  Google Scholar 

  147. Wu, C.D., Fang, T.H., Lo, J.Y.: Effects of pressure, temperature, and geometric structure of pillared graphene on hydrogen storage capacity. Int. J. Hydrogen Energy 37, 14211–14216 (2012)

    Article  CAS  Google Scholar 

  148. Xiang, Q., Yu, J., Jaroniec, M.: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)

    Article  CAS  Google Scholar 

  149. Xu, C., Xu, B., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388 (2013)

    Article  CAS  Google Scholar 

  150. Yao, J., Sun, Y., Yang, M., Duan, Y.: Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J. Mater. Chem. 22, 14313–14329 (2012)

    Article  CAS  Google Scholar 

  151. Yavari, F., Koratkar, N.: Graphene-based chemical sensors. J. Phys. Chem. Lett. 3, 1746–1753 (2012)

    Article  CAS  Google Scholar 

  152. Yildiz, Y., Erken, E., Pamuk, H., et al.: Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5951–5958 (2016)

    Article  CAS  Google Scholar 

  153. Yildiz, Y., Esirden, I., Erken, E., et al.: Microwave (Mw)-assisted synthesis of 5-substituted 1H-tetrazoles via [3 + 2] cycloaddition catalyzed by Mw-Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. ChemistrySelect 1(8), 1695–1701 (2016)

    Article  CAS  Google Scholar 

  154. Yildiz, Y., Kuzu, S., Sen, B., et al.: Different ligand based monodispersed metal nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int. J. Hydrogen Energy 42(18), 13061–13069 (2017)

    Article  CAS  Google Scholar 

  155. Yildiz, Y., Okyay, T.O., Gezer, B., et al.: Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J. Cluster Sci. 27, 1953–1962 (2016)

    Article  CAS  Google Scholar 

  156. Yildiz, Y., Okyay, T.O., Sen, B., et al.: Activated carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. J. Nanosci. Nanotechnol. 17, 4799–4804 (2017)

    Article  CAS  Google Scholar 

  157. Yildiz, Y., Okyay, T.O., Sen, B., et al.: Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect 2(2), 697–701 (2017)

    Article  CAS  Google Scholar 

  158. Yildiz, Y., Pamuk, H., Karatepe, O., et al.: Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Adv. 6, 32858–32862 (2016)

    Article  CAS  Google Scholar 

  159. Yildiz, Y., Ulus, R., Eris, S., et al.: Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect 1(13), 3861–3865 (2016)

    Article  CAS  Google Scholar 

  160. Yildirim, T., Ciraci, S.: Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94, 175501 (2005)

    Article  CAS  Google Scholar 

  161. Yu, A., Ramesh, P., Itkis, M.E., et al.: Graphite nanoplatelet–epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7565–7569 (2007)

    Article  CAS  Google Scholar 

  162. Zhang, Y., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013)

    Article  CAS  Google Scholar 

  163. Zhang, N., Zhang, Y., Xu, Y.J.: Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012)

    Article  CAS  Google Scholar 

  164. Zhao, G., Wen, T., Chen, C., et al.: Synthesis of graphene-based nanomaterials and their application in energy related and environmental-related areas. RSC Adv. 2, 9286–9303 (2012)

    Article  CAS  Google Scholar 

  165. Zhou, Y.G., Zu, X.T., Gao, F., et al.: Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J. Appl. Phys. 105, 014309 (2009)

    Article  CAS  Google Scholar 

  166. Zhu, Y., Murali, S., Cai, W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  Google Scholar 

  167. Zhu, Y., James, D.K., Tour, J.M.: New routes to graphene, graphene oxide and their related applications. Adv. Mater. 24, 4924–4955 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Şen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aygün, A., Atalay, E., Yassin, S., Khan, A., Şen, F. (2019). Graphene-Based Nanomaterials for Hydrogen Storage. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_10

Download citation

Publish with us

Policies and ethics