Skip to main content

Transcription and Aging

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology
  • 550 Accesses

Abstract

Genome-wide surveys of gene expression changes give a global insight into the physiological status of an aging organism. Very few orthologous genes for processes such as DNA repair and mitochondrial function display aging-related shared patterns of gene expression across species. Most mechanisms affecting gene expression in an aging-related context appear to be specific to the species or tissue in question. This lack of a general mechanism for aging assumes greater significance during design of therapeutic interventions. Unlike targeted studies dissecting particular molecular pathways, gene expression analysis survey global expression profiles of the organism or tissue in question in an unbiased manner. Hence, these are an invaluable tool in identification of target biomarkers for interventions to enhance healthy aging and increase lifespan. We review here multiple aging-related transcriptomics studies that have been done within and across species as diverse as Saccharomyces cerevisiae to humans that query various age ranges, tissues and environmental perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kowald A, Kirkwood TBL. Can aging be programmed? A critical literature review. Aging Cell. 2016;15:986–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kirkwood TBL, Melov S. On the programmed/non-programmed nature of ageing within the life history. Curr Biol. 2011;21:R701–7.

    CAS  PubMed  Google Scholar 

  3. Zimniak P. Detoxification reactions: relevance to aging. Ageing Res Rev. 2008;7:281–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Partridge L. The new biology of ageing. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365:147–54.

    Google Scholar 

  5. Kirkwood TBL, Austad SN. Why do we age? Nature. 2000;408:233–8.

    CAS  PubMed  Google Scholar 

  6. Weinert BT, Timiras PS. Physiology of aging. Invited review: theories of aging. J Appl Physiol. 2003;95:1706–16.

    CAS  PubMed  Google Scholar 

  7. Gladyshev VN. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell. 2016;15:594–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120:449–60.

    CAS  PubMed  Google Scholar 

  9. Kim SK. Common aging pathways in worms, flies, mice and humans. J Exp Biol. 2007;210:1607–12.

    CAS  PubMed  Google Scholar 

  10. Greer EL, Brunet A. Signaling networks in aging. J Cell Sci. 2008;121:407–12.

    CAS  PubMed  Google Scholar 

  11. Weake VM, Workman JL. Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet. 2010;11:426–37.

    CAS  PubMed  Google Scholar 

  12. Hahn S, Young ET. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics. 2011;189:705–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Juven-Gershon T, Kadonaga JT. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol. 2010;339:225–9.

    CAS  PubMed  Google Scholar 

  14. O’Sullivan RJ, Karlseder J. The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci. 2013;37:466–76.

    Google Scholar 

  15. Watt PM, Hickson ID, Borts RH, Louis EJL. SGS1, a homologue of the Blooms and Werner’s syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics. 1996;144:935–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bitterman KJ, Medvedik O, Sinclair DA. Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev. 2003;67:376–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stewart EJ, Madden R, Paul G, Taddei F. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 2005;3:0295–300.

    CAS  Google Scholar 

  18. Coelho M, Lade SJ, Alberti S, Gross T, Tolic IM. Fusion of protein aggregates facilitates asymmetric damage segregation. PLoS Biol. 2014;12:1–11.

    Google Scholar 

  19. Kapahi P, Kaberlein M, Hansen M. Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res Rev. 2017;39:3–14.

    PubMed  Google Scholar 

  20. Smith ED, Kennedy BK, Kaeberlein M. Genome-wide identification of conserved longevity genes in yeast and worms. Mech Ageing Dev. 2007;128:106–11.

    CAS  PubMed  Google Scholar 

  21. Lin SS, Manchester JK, Gordon JI. Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J Biol Chem. 2001;276:36000–7.

    CAS  PubMed  Google Scholar 

  22. Laun P, et al. A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res. 2005;5:1261–72.

    CAS  PubMed  Google Scholar 

  23. Kamei Y, Tamada Y, Nakayama Y, Fukusaki E, Mukai Y. Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast. J Biol Chem. 2014;289:32081–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yiu G, McCord A, Wise A, Jindal R, Hardee J, Kuo A, Shimogawa MY, Cahoon L, Wu M, Kloke J, Hardin J, Hoopes LLM. Pathways change in expression during replicative aging in Saccharomyces cerevisiae. J Gerontol – Ser A Biol Sci Med Sci. 2008;63:21–34.

    Google Scholar 

  25. Slavov N, Airoldi EM, Van Oudenaarden A, Botstein D. A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes. Mol Biol Cell. 2012;23:1986–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gonskikh Y, Polacek N. Alterations of the translation apparatus during aging and stress response. Mech Ageing Dev. 2017;168:30.

    CAS  PubMed  Google Scholar 

  27. Janssens GE, et al. Protein biogenesis machinery is a driver of replicative aging in yeast. elife. 2015;4:e08527.

    PubMed  PubMed Central  Google Scholar 

  28. Janssens GE, Veenhoff LM. The natural variation in lifespans of single yeast cells is related to variation in cell size, ribosomal protein, and division time. PLoS One. 2016;11:1–18.

    Google Scholar 

  29. Feser J, Truong d, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK. Elevated histone expression promotes lifespan extension. Mol Cell. 2010;39:724–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu Z, et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev. 2014;28:396–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dang W, et al. Histone H4 lysine-16 acetylation regulates cellular lifespan. Nature. 2009;459:802–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Denoth-Lippuner A, Krzyzanowski MK, Stober C, Barral Y. Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. elife. 2014;3:e03790.

    PubMed Central  Google Scholar 

  33. McCormick MA, et al. The SAGA histone deubiquitinase module controls yeast replicative lifespan via Sir2 interaction. Cell Rep. 2014;8:477–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Longo VD, Fabrizio P. Chronological aging in Saccharomyces cerevisiae. Subcell Biochem. 2012;57:101–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wanichthanarak K, Wongtosrad N, Petranovic D. Genome-wide expression analyses of the stationary phase model of ageing in yeast. Mech Ageing Dev. 2015;149:65–74.

    CAS  PubMed  Google Scholar 

  36. Burtner CR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M. A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle. 2011;10:1385–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Longo VD, Shadel GS, Kaeberlein M, Kennedy B. Replicative and chronological ageing in Saccharomyces cerevisiae. Cell Metab. 2013;16:18–31.

    Google Scholar 

  38. McCarroll SA, et al. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet. 2004;36:197–204.

    CAS  PubMed  Google Scholar 

  39. Lund J, et al. Transcriptional profile of Aging in C elegans. Curr Biol. 2002;12:1566–73.

    CAS  PubMed  Google Scholar 

  40. Golden TR, Hubbard A, Dando C, Herren MA. Age-related behaviours have distinct transcriptional profiles in C. elegans. Aging (Albany NY). 2009;7:850–65.

    Google Scholar 

  41. Chapin HC, Okada M, Merz AJ, Miller DL. Tissue – specific autophagy responses to aging and stress in C. elegans. Aging (Albany NY). 2015;7:419–32.

    CAS  Google Scholar 

  42. Dorman JB, Albinder B, Shroyer T, Kenyon C. The age-1 and daf2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 1995;141:1399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Viswanathan M, Kim SK, Berdichevsky A, Guarente L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell. 2005;9:605–15.

    CAS  PubMed  Google Scholar 

  44. McElwee J, Bubb K, Thomas JH. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell. 2003;2:111–21.

    CAS  PubMed  Google Scholar 

  45. Mcelwee JJ, Schuster E, Blanc E, Thomas JH, Gems D. Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem. 2004;279:44533–43.

    CAS  PubMed  Google Scholar 

  46. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A. PHA-4/Foxa mediates diet-restriction- induced longevity of C. elegans. Nature. 2007;447:550.

    CAS  PubMed  Google Scholar 

  47. Jain V, Kumar N, Mukhopadhyay A. PHA-4/FOXA-regulated microRNA feed forward loops during Caenorhabditis elegans dietary restriction. Aging (Albany NY). 2014;6:835–51.

    Google Scholar 

  48. Bishop NA, Guarente L, Al N. Two neurons mediate diet-restriction- induced longevity in C. elegans. Nature. 2007;447:545–50.

    CAS  PubMed  Google Scholar 

  49. Chen D, Thomas EL, Kapahi P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet. 2009;5:e1000486.

    PubMed  PubMed Central  Google Scholar 

  50. Carrano AC, Liu Z, Dillin A, Hunter T. A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature. 2009;460:396–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Venkatesh S, et al. Histone exchange on transcribed genes. Nature. 2012;489:452–5.

    CAS  PubMed  Google Scholar 

  52. Pu M, et al. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev. 2015;29:718–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chalovich JM, Eisenberg E. Systems biology of ageing in 4 species. Curr Opin Biotechnol. 2007;257:2432–7.

    Google Scholar 

  54. Jung HJ, Suh Y. MicroRNA in aging: from discovery to biology. Curr Genomics. 2012;13:548–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Slack FJ, Kato M. Ageing and the small, non-coding RNA world. Ageing Res Rev. 2014;12:429–35.

    Google Scholar 

  56. De Lencastre A, et al. NIH public access. Curr Biol. 2010;20:2159–68.

    PubMed  PubMed Central  Google Scholar 

  57. Boulias K, Horvitz HR. The C. elegans MicroRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab. 2012;15:439–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith-vikos T, Slack FJ. MicroRNAs and their roles in aging. J Cell Sci. 2012;125:7–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pletcher SD, et al. Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol. 2002;12:712–23.

    CAS  PubMed  Google Scholar 

  60. Brink TC, Regenbrecht C, Demetrius L, Lehrach H, Adjaye J. Activation of the immune response is a key feature of aging in mice. Biogerontology. 2009;10:721–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Frahm C, et al. Transcriptional profiling reveals protective mechanisms in brains of long lived mice. Neurobiol Aging. 2016;52:23–31.

    PubMed  Google Scholar 

  62. Swindell WR. Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse. BMC Genomics. 2009;10:585.

    PubMed  PubMed Central  Google Scholar 

  63. Lui JC, Chen W, Barnes KM, Baron J. Changes in gene expression associated with aging commonly originate during juvenile growth. Mech Ageing Dev. 2011;131:641–9.

    Google Scholar 

  64. Park S-K. Genomic approaches for the understanding of aging in model organisms. BMB Rep. 2011;44:291–7.

    CAS  PubMed  Google Scholar 

  65. Park SK, Prolla TA. Lessons learned from gene expression profile studies of aging and caloric restriction. Ageing Res Rev. 2005;4:55–65.

    CAS  PubMed  Google Scholar 

  66. Park S-K, Prolla TA. Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc Res. 2005;66:205–12.

    CAS  PubMed  Google Scholar 

  67. Edwards MG, et al. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program. BMC Genomics. 2007;8:80.

    PubMed  PubMed Central  Google Scholar 

  68. Southworth LK, Owen AB, Kim SK. Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet. 2009;5:e1000776.

    PubMed  PubMed Central  Google Scholar 

  69. Takasugi M. Progressive age-dependent DNA methylation changes start before adulthood in mouse tissues. Mech Ageing Dev. 2011;132:65–71.

    CAS  PubMed  Google Scholar 

  70. de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009;25:875–81.

    PubMed  PubMed Central  Google Scholar 

  71. Zahn JM, Kim SK. Systems biology of aging in four species. Curr Opin Biotechnol. 2007;18:355–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fraser HB, Khaitovich P, Plotkin JB, Pääbo S, Eisen MB. Aging and gene expression in the primate brain. PLoS Biol. 2005;3:1653–61.

    CAS  Google Scholar 

  73. Brinkmeyer-Langford CL, Guan J, Ji G, Cai JJ. Aging shapes the population-mean and -dispersion of gene expression in human brains. Front Aging Neurosci. 2016;8:1–14.

    Google Scholar 

  74. Hong MG, Myers AJ, Magnusson PKE, Prince JA. Transcriptome-wide assessment of human brain and lymphocyte senescence. PLoS One. 2008;3:e3024.

    PubMed  PubMed Central  Google Scholar 

  75. Colantuoni C, et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature. 2011;478:519–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kumar A, et al. Age associated changes in gene expression in human brain and isolated neurons. Neurobiol Aging. 2013;34:1199–209.

    CAS  PubMed  Google Scholar 

  77. Somel M, et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res. 2010;20:1207–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cribbs DH, et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation. 2012;9:179.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Berchtold NC, et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol Aging. 2013;34:1653–61.

    CAS  PubMed  Google Scholar 

  80. Meng G, Zhong X, Mei H. A systematic investigation into aging related genes in brain and their relationship with Alzheimer’s disease. PLoS One. 2016;11:1–17.

    Google Scholar 

  81. Berchtold NC, et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A. 2008;105:15605–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dugo M, et al. Human lung tissue Transcriptome: influence of sex and age. PLoS One. 2016;11:e0167460.

    PubMed  PubMed Central  Google Scholar 

  83. Swindell WR, et al. Meta-profiles of gene expression during aging: limited similarities between mouse and human and an unexpectedly decreased inflammatory signature. PLoS One. 2012;7:e33204.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kuehne A, et al. An integrative metabolomics and transcriptomics study to identify metabolic alterations in aged skin of humans in vivo. BMC Genomics. 2017;18:169.

    PubMed  PubMed Central  Google Scholar 

  85. Haustead DJ, et al. Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κB. Sci Rep. 2016;6:26846.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Glass D, et al. Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013;14:R75.

    PubMed  PubMed Central  Google Scholar 

  87. Harries LW, et al. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011;10:868–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Irizar H, et al. Age gene expression and coexpression progressive signatures in peripheral blood leukocytes. Exp Gerontol. 2015;72:50–6.

    CAS  PubMed  Google Scholar 

  89. Nevalainen T, et al. Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the vitality 90+ study. Age (Omaha). 2015;37:1–13.

    CAS  Google Scholar 

  90. Reynolds LM, et al. Transcriptomic profiles of aging in purified human immune cells. BMC Genomics. 2015;16:333.

    PubMed  PubMed Central  Google Scholar 

  91. Zahn JM, et al. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet. 2006;2:e115.

    PubMed  PubMed Central  Google Scholar 

  92. Rodwell GEJ, et al. A transcriptional profile of aging in the human kidney. PLoS Biol. 2004;2:e427.

    PubMed  PubMed Central  Google Scholar 

  93. Gheorghe M, et al. Major aging-associated RNA expressions change at two distinct age-positions. BMC Genomics. 2014;15:132.

    PubMed  PubMed Central  Google Scholar 

  94. Yang J, et al. Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep. 2015;5:15145.

    PubMed  PubMed Central  Google Scholar 

  95. Marttila S, et al. Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression. BMC Genomics. 2015;16:1–17.

    CAS  Google Scholar 

  96. Yuan T, et al. An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. PLoS Genet. 2015;11:e1004996.

    PubMed  PubMed Central  Google Scholar 

  97. Bahar R, et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–4.

    CAS  PubMed  Google Scholar 

  98. Yuan G-C, et al. Challenges and emerging directions in single-cell analysis. Genome Biol. 2017;18:1–8.

    Google Scholar 

  99. Stunkard AJ. Genome dynamics and transcriptional deregulation in ageing. Neuroscience. 2007;162:214–20.

    Google Scholar 

  100. Busuttil R, Bahar R, Vijg J. Genome dynamics and transcriptional deregulation in aging. Neuroscience. 2007;145:1341–7.

    CAS  PubMed  Google Scholar 

  101. Busuttil RA, Dolle M, Campisi J, Vijga J. Genomic instability, aging, and cellular senescence. Ann N Y Acad Sci. 2004;1019:245–55.

    CAS  PubMed  Google Scholar 

  102. Kennedy BK. The genetics of ageing: insight from genome-wide approaches in invertebrate model organisms. J Intern Med. 2008;263:142–52.

    CAS  PubMed  Google Scholar 

  103. Pitt JN, Kaeberlein M. Why is aging conserved and what can we do about it? PLoS Biol. 2015;13:1–11.

    Google Scholar 

  104. Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ. Evolution of lifespan in C. elegans. Nature. 2000;405:296–7.

    CAS  PubMed  Google Scholar 

  105. Briga M, Verhulst S. What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments? Exp Gerontol. 2015;71:21–6.

    PubMed  Google Scholar 

  106. Bishop N, Guarente L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet. 2007;8:835–44.

    CAS  PubMed  Google Scholar 

  107. López-Lluch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol. 2015;594:2043–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Malika Saint or Pramod C. Rath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saint, M., Rath, P.C. (2020). Transcription and Aging. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9005-1_3

Download citation

Publish with us

Policies and ethics