Skip to main content

Protein Structure and Function in Aging and Age-Related Diseases

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

Aging is not a disease, but a complex process driven by diverse molecular pathways and biochemical events. It is usually seen as the reason of progressive loss of physiological functions that ultimately lead to death. Every species is associated with an average life expectancy, and therefore it is plausible to think that aging is programmed in our genes. Genes exert their effects by gene expression that is coupled with protein synthesis. Proteins are most abundant and structurally diverse, perform wide variety of roles, and in part maintain functional stability and homeostasis of cells. Protein misfolding, aggregation, or an alteration in protein–protein/nucleic acid/lipid interactions and modifications has the potential to disturb many metabolic pathways. During aging such alterations are accelerated and accumulations of altered proteins are correlated with age- and disease-related pathologies. Therefore, it is critical to identify and understand proteomic spectrum and its functional implications in the aging process. Protein structure and integrity of function in protein synthesis, accuracy, posttranslational modifications, and their role in metabolic pathways and associated diseases are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crick F. Central dogma of molecular biology. Nature. 1970;227:561–3.

    Article  CAS  PubMed  Google Scholar 

  2. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  CAS  PubMed  Google Scholar 

  3. Lewin R. RNA can be a catalyst. Science. 1982;218:872–4.

    Article  CAS  PubMed  Google Scholar 

  4. Elsersawi A. Biochemistry of aging: wellness and longevity. Bloomington: AuthorHouse; 2010.

    Google Scholar 

  5. National Institute on Aging;1999.

    Google Scholar 

  6. Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.

    Article  CAS  PubMed  Google Scholar 

  7. Horwich AL. Molecular chaperones in cellular protein folding: the birth of a field. Cell. 2014;157:285–8.

    Article  CAS  PubMed  Google Scholar 

  8. Cuervo AM. Autophagy and aging: keeping that old broom working. Trends Genet : TIG. 2008;24:604–12.

    Article  CAS  PubMed  Google Scholar 

  9. Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids. 2011;2011:207691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430:686–9.

    Article  CAS  PubMed  Google Scholar 

  12. Honjoh S, Yamamoto T, Uno M, Nishida E. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature. 2009;457:726–30.

    Article  CAS  PubMed  Google Scholar 

  13. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Current Biol : CB. 2007;17:1646–56.

    Article  CAS  Google Scholar 

  14. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Current Biol : CB. 2004;14:885–90.

    Article  CAS  Google Scholar 

  15. Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012;61:1315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hands SL, Proud CG, Wyttenbach A. mTOR’s role in ageing: protein synthesis or autophagy? Aging. 2009;1:586–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kenyon CJ. The genetics of ageing. Nature. 2010;464:504–12.

    Article  CAS  PubMed  Google Scholar 

  18. Blagosklonny MV. Aging: ROS or TOR. Cell Cycle. 2008;7:3344–54.

    Article  CAS  PubMed  Google Scholar 

  19. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310:1193–6.

    Article  CAS  PubMed  Google Scholar 

  20. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426:620.

    Article  CAS  PubMed  Google Scholar 

  21. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004;131:3897–906.

    Article  CAS  PubMed  Google Scholar 

  22. Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, Um SH, Brown EJ, Cereghini S, Thomas G, et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol. 2004;24:9508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24:92–104.

    Article  CAS  PubMed  Google Scholar 

  24. Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–63.

    Article  CAS  PubMed  Google Scholar 

  25. Rattan SI. Synthesis, modifications, and turnover of proteins during aging. Exp Gerontol. 1996;31:33–47.

    Article  CAS  PubMed  Google Scholar 

  26. Kimball SR, Vary TC, Jefferson LS. Age-dependent decrease in the amount of eukaryotic initiation factor 2 in various rat tissues. Biochem J. 1992;286(Pt 1):263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122:3589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choo AY, Blenis J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle. 2009;8:567–72.

    Article  CAS  PubMed  Google Scholar 

  29. McCormick MA, Tsai SY, Kennedy BK. TOR and ageing: a complex pathway for a complex process. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:17–27.

    Article  CAS  Google Scholar 

  30. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell. 2007;6:95–110.

    Article  CAS  PubMed  Google Scholar 

  31. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell. 2009;139:149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell. 2007;6:111–9.

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20:4370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 2009;326:140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Troulinaki K, Tavernarakis N. Protein synthesis and ageing. New York: Nova Science Publishers, Inc; 2008.

    Google Scholar 

  36. Cuervo AM. Autophagy: many paths to the same end. Mol Cell Biochem. 2004;263:55–72.

    Article  CAS  PubMed  Google Scholar 

  37. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246:382–5.

    Article  CAS  PubMed  Google Scholar 

  39. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.

    Article  CAS  PubMed  Google Scholar 

  40. Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining "clean" cells. Autophagy. 2005;1:131–40.

    Article  PubMed  Google Scholar 

  41. Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M, et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy. 2008;4:330–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF. Autophagy regulates ageing in C. elegans. Autophagy. 2007;3:93–5.

    Article  CAS  PubMed  Google Scholar 

  43. Juhasz G, Erdi B, Sass M, Neufeld TP. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 2007;21:3061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4:176–84.

    Article  CAS  PubMed  Google Scholar 

  45. Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N. Autophagy as a potential target for sarcopenia. J Cell Physiol. 2016;231:1450–9.

    Article  CAS  PubMed  Google Scholar 

  46. Rattan SI. Synthesis, modification and turnover of proteins during aging. Adv Exp Med Biol. 2010;694:1–13.

    Article  CAS  PubMed  Google Scholar 

  47. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008;105:10762–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stein GH, Dulic V. Origins of G1 arrest in senescent human fibroblasts. Bioessays. 1995;17:537–43.

    Article  CAS  PubMed  Google Scholar 

  49. Merrick WC. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992;56:291–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Riis B, Rattan SI, Palmquist K, Nilsson A, Nygard O, Clark BF. Elongation factor 2-specific calcium and calmodulin dependent protein kinase III activity in rat livers varies with age and calorie restriction. Biochem Biophys Res Commun. 1993;192:1210–6.

    Article  CAS  PubMed  Google Scholar 

  51. Riis B, Rattan SI, Palmquist K, Clark BF, Nygard O. Dephosphorylation of the phosphorylated elongation factor-2 in the livers of calorie-restricted and freely-fed rats during ageing. Biochem Mol Biol Int. 1995;35:855–9.

    CAS  PubMed  Google Scholar 

  52. Meinnel T, Mechulam Y, Blanquet S. Aminoacyl-tRNA Synthetases: occurrence, structure, and function. Washington, DC: ASM Press; 1995.

    Google Scholar 

  53. Kihara F, Ninomiya-Tsuji J, Ishibashi S, Ide T. Failure in S6 protein phosphorylation by serum stimulation of senescent human diploid fibroblasts, TIG-1. Mech Ageing Dev. 1986;37:27–40.

    Article  CAS  PubMed  Google Scholar 

  54. Battaini F. Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol Res. 2001;44:353–61.

    Article  CAS  PubMed  Google Scholar 

  55. Amadio M, Battaini F, Pascale A. The different facets of protein kinases C: old and new players in neuronal signal transduction pathways. Pharmacol Res. 2006;54:317–25.

    Article  CAS  PubMed  Google Scholar 

  56. Van der Zee EA, Compaan JC, de Boer M, Luiten PG. Changes in PKC gamma immunoreactivity in mouse hippocampus induced by spatial discrimination learning. J Neurosci. 1992;12:4808–15.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E. Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci U S A. 1993;90:8342–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Battaini F, Pascale A. Protein kinase C signal transduction regulation in physiological and pathological aging. Ann N Y Acad Sci. 2005;1057:177–92.

    Article  CAS  PubMed  Google Scholar 

  59. Pascale A, Amadio M, Govoni S, Battaini F. The aging brain, a key target for the future: the protein kinase C involvement. Pharmacol Res. 2007;55:560–9.

    Article  CAS  PubMed  Google Scholar 

  60. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995;268:247–51.

    Article  CAS  PubMed  Google Scholar 

  61. Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995;9:484–96.

    Article  CAS  PubMed  Google Scholar 

  62. Bloch S, Cedar H. Methylation of chromatin DNA. Nucleic Acids Res. 1976;3:1507–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu J, Jia G. Methylation modifications in eukaryotic messenger RNA. Journal of genetics and genomics =. Yi Chuan Xue Bao. 2014;41:21–33.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Mittal A, Reid J, Reich S, Gamblin SJ, Wilson JR. Evolving catalytic properties of the MLL family SET domain. Structure. 2015;23:1921–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nekrasov M, Wild B, Muller J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 2005;6:348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015;14:924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E. Epigenetic predictor of age. PLoS One. 2011;6:e14821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.

    Article  CAS  PubMed  Google Scholar 

  69. Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet. 2014;23:1186–201.

    Article  CAS  PubMed  Google Scholar 

  70. Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, Calle-Perez A, Pircher A, Gerstl MP, Pfeifenberger S, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6:6158.

    Article  CAS  PubMed  Google Scholar 

  71. Blanco S, Frye M. Role of RNA methyltransferases in tissue renewal and pathology. Curr Opin Cell Biol. 2014;31:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang M. The University of Western Ontario;2012.

    Google Scholar 

  73. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Eissenberg JC, Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol. 2010;339:240–9.

    Article  CAS  PubMed  Google Scholar 

  75. Bibikova M, Laurent LC, Ren B, Loring JF, Fan JB. Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell. 2008;2:123–34.

    Article  CAS  PubMed  Google Scholar 

  76. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10:1107–17.

    Article  CAS  PubMed  Google Scholar 

  77. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature. 2010;466:383–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Han S, Brunet A. Histone methylation makes its mark on longevity. Trends Cell Biol. 2012;22:42–9.

    Article  PubMed  CAS  Google Scholar 

  79. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166:822–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barber JR, Clarke S. Membrane protein carboxyl methylation increases with human erythrocyte age. Evidence for an increase in the number of methylatable sites. J Biol Chem. 1983;258:1189–96.

    Article  CAS  PubMed  Google Scholar 

  81. de la Mora-de la Mora I, Torres-Larios A, Enriquez-Flores S, Mendez ST, Castillo-Villanueva A, Gomez-Manzo S, Lopez-Velazquez G, Marcial-Quino J, Torres-Arroyo A, Garcia-Torres I, et al. Structural effects of protein aging: terminal marking by deamidation in human triosephosphate isomerase. PLoS One. 2015;10:e0123379.

    Google Scholar 

  82. Robinson NE, Robinson AB. Deamidation of human proteins. Proc Natl Acad Sci U S A. 2001;98:12409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lindner H, Helliger W. Age-dependent deamidation of asparagine residues in proteins. Exp Gerontol. 2001;36:1551–63.

    Article  CAS  PubMed  Google Scholar 

  84. Scotchler JW, Robinson AB. Deamidation of glutaminyl residues: dependence on pH, temperature, and ionic strength. Anal Biochem. 1974;59:319–22.

    Article  CAS  PubMed  Google Scholar 

  85. Robinson NE, Robinson AB. Molecular clocks. Proc Natl Acad Sci U S A. 2001;98:944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Toyama BH, Hetzer MW. Protein homeostasis: live long, won’t prosper. Nat Rev Mol Cell Biol. 2013;14:55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Masters PM, Bada JL, Zigler JS Jr. Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature. 1977;268:71–3.

    Article  CAS  PubMed  Google Scholar 

  88. Helfman PM, Bada JL. Aspartic acid racemisation in dentine as a measure of ageing. Nature. 1976;262:279–81.

    Article  CAS  PubMed  Google Scholar 

  89. Helfman PM, Bada JL. Aspartic acid racemization in tooth enamel from living humans. Proc Natl Acad Sci U S A. 1975;72:2891–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hooi MY, Raftery MJ, Truscott RJ. Age-dependent deamidation of glutamine residues in human gammaS crystallin: deamidation and unstructured regions. Protein Sci. 2012;21:1074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lampiasi N, Umezawa K, Montalto G, Cervello M. Poly (ADP-ribose) polymerase inhibition synergizes with the NF-kappaB inhibitor DHMEQ to kill hepatocellular carcinoma cells. Biochim Biophys Acta. 2014;1843:2662–73.

    Article  CAS  PubMed  Google Scholar 

  92. Schey KL, Little M, Fowler JG, Crouch RK. Characterization of human lens major intrinsic protein structure. Invest Ophthalmol Vis Sci. 2000;41:175–82.

    CAS  PubMed  Google Scholar 

  93. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  94. Harman D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology. 2009;10:773–81.

    Article  CAS  PubMed  Google Scholar 

  95. de Graff AM, Hazoglou MJ, Dill KA. Highly charged proteins: the Achilles’ heel of aging proteomes. Structure. 2016;24:329–36.

    Article  PubMed  CAS  Google Scholar 

  96. Stadtman ER. Protein oxidation and aging. Science. 1992;257:1220–4.

    Article  CAS  PubMed  Google Scholar 

  97. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003;9:169–76.

    Article  CAS  PubMed  Google Scholar 

  98. Tanase M, Urbanska AM, Zolla V, Clement CC, Huang L, Morozova K, Follo C, Goldberg M, Roda B, Reschiglian P, et al. Role of carbonyl modifications on aging-associated protein aggregation. Sci Rep. 2016;6:19311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 2008;13:3046–82.

    Article  CAS  PubMed  Google Scholar 

  100. Piskunova TS, Yurova MN, Ovsyannikov AI, Semenchenko AV, Zabezhinski MA, Popovich IG, Wang ZQ, Anisimov VN. Deficiency in poly(ADP-ribose) Polymerase-1 (PARP-1) accelerates aging and spontaneous carcinogenesis in mice. Curr Gerontol Geriatr Res. 2008;2008:754190.

    Article  PubMed Central  CAS  Google Scholar 

  101. Beneke S, Burkle A. Poly(ADP-ribosyl)ation in mammalian ageing. Nucleic Acids Res. 2007;35:7456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Saxena A, Saffery R, Wong LH, Kalitsis P, Choo KH. Centromere proteins Cenpa, Cenpb, and Bub3 interact with poly(ADP-ribose) polymerase-1 protein and are poly(ADP-ribosyl)ated. J Biol Chem. 2002;277:26921–6.

    Article  CAS  PubMed  Google Scholar 

  103. O’Connor MS, Safari A, Liu D, Qin J, Songyang Z. The human Rap1 protein complex and modulation of telomere length. J Biol Chem. 2004;279:28585–91.

    Article  PubMed  CAS  Google Scholar 

  104. Dell’Orco RT, Anderson LE. Decline of poly(ADP-ribosyl)ation during in vitro senescence in human diploid fibroblasts. J Cell Physiol. 1991;146:216–21.

    Article  PubMed  Google Scholar 

  105. Riis B, Rattan SI, Derventzi A, Clark BF. Reduced levels of ADP-ribosylatable elongation factor-2 in aged and SV40-transformed human cell cultures. FEBS Lett. 1990;266:45–7.

    Article  CAS  PubMed  Google Scholar 

  106. Dobson CM. Protein folding and misfolding. Nature. 2003;426:884–90.

    Article  CAS  PubMed  Google Scholar 

  107. Vendruscolo M, Knowles TP, Dobson CM. Protein solubility and protein homeostasis: a generic view of protein misfolding disorders. Cold Spring Harb Perspect Biol. 2011;3:a010454.

    Google Scholar 

  108. Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell. 2006;125:443–51.

    Article  CAS  PubMed  Google Scholar 

  109. Berrios GE. Alzheimer’s disease: A conceptual history. Int J Geriatr Psychiatry. 1990;5:355–65.

    Article  Google Scholar 

  110. Wilson RS, Barral S, Lee JH, Leurgans SE, Foroud TM, Sweet RA, Graff-Radford N, Bird TD, Mayeux R, Bennett DA. Heritability of different forms of memory in the late onset Alzheimer’s disease family study. J Alzheimers Dis. 2011;23:249–55.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med. 2001;7:548–54.

    Article  CAS  PubMed  Google Scholar 

  112. Hardy J, A.D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–8.

    Article  CAS  PubMed  Google Scholar 

  113. Mudher A, Lovestone S. Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci. 2002;25:22–6.

    Article  CAS  PubMed  Google Scholar 

  114. Saido TC. Metabolism of amyloid beta peptide and pathogenesis of Alzheimer’s disease. Proc Jpn Acad Ser B Phys Biol Sci. 2013;89:321–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis. 2013;33(Suppl 1):S123–39.

    PubMed  Google Scholar 

  116. Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R. Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell. 2013;154:1257–68.

    Article  CAS  PubMed  Google Scholar 

  117. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol. 2010;17:561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schmidt M, Sachse C, Richter W, Xu C, Fandrich M, Grigorieff N. Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci U S A. 2009;106:19813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kirschner DA, Abraham C, Selkoe DJ. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci U S A. 1986;83:503–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Paravastu AK, Leapman RD, Yau WM, Tycko R. Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci U S A. 2008;105:18349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A. 2005;102:17342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem. 1995;65:2146–56.

    Article  CAS  PubMed  Google Scholar 

  123. Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience. 2001;103:373–83.

    Article  CAS  PubMed  Google Scholar 

  124. Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem. 2000;74:2520–7.

    Article  CAS  PubMed  Google Scholar 

  125. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med. 2002;33:562–71.

    Article  CAS  PubMed  Google Scholar 

  126. Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J. 2016;473:2453–62.

    Article  CAS  PubMed  Google Scholar 

  127. Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D, Sangwan S, Guenther EL, Johnson LM, Zhang M, et al. Structure of the toxic core of alpha-synuclein from invisible crystals. Nature. 2015;525:486–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.

    Article  CAS  PubMed  Google Scholar 

  129. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985–9.

    Article  CAS  PubMed  Google Scholar 

  130. Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet. 2007;16(2):R183–94.

    Article  CAS  PubMed  Google Scholar 

  131. Tan JM, Wong ES, Lim KL. Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal. 2009;11:2119–34.

    Article  CAS  PubMed  Google Scholar 

  132. Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A. 2013;110:8638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–8.

    Article  CAS  PubMed  Google Scholar 

  134. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.

    Article  CAS  PubMed  Google Scholar 

  135. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, et al. Alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841.

    Article  CAS  PubMed  Google Scholar 

  136. Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:11282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Giasson BI, Murray IV, Trojanowski JQ, Lee VM. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem. 2001;276:2380–6.

    Article  CAS  PubMed  Google Scholar 

  138. Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci. 2007;27:3338–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Der-Sarkissian A, Jao CC, Chen J, Langen R. Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. J Biol Chem. 2003;278:37530–5.

    Article  CAS  PubMed  Google Scholar 

  140. Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4:1318–20.

    Article  CAS  PubMed  Google Scholar 

  141. Young VR, Steffee WP, Pencharz PB, Winterer JC, Scrimshaw NS. Total human body protein synthesis in relation to protein requirements at various ages. Nature. 1975;253:192–4.

    Article  CAS  PubMed  Google Scholar 

  142. Lewis SE, Goldspink DF, Phillips JG, Merry BJ, Holehan AM. The effects of aging and chronic dietary restriction on whole body growth and protein turnover in the rat. Exp Gerontol. 1985;20:253–63.

    Article  CAS  PubMed  Google Scholar 

  143. Ryazanov AG, Nefsky BS. Protein turnover plays a key role in aging. Mech Ageing Dev. 2002;123:207–13.

    Article  CAS  PubMed  Google Scholar 

  144. Prasanna HR, Lane RS. Protein degradation in aged nematodes (Turbatrix aceti). Biochem Biophys Res Commun. 1979;86:552–9.

    Article  CAS  PubMed  Google Scholar 

  145. Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 1998;21:516–20.

    Article  CAS  PubMed  Google Scholar 

  146. Friguet B, Bulteau AL, Chondrogianni N, Conconi M, Petropoulos I. Protein degradation by the proteasome and its implications in aging. Ann N Y Acad Sci. 2000;908:143–54.

    Article  CAS  PubMed  Google Scholar 

  147. Cuervo AM, Dice JF. When lysosomes get old. Exp Gerontol. 2000;35:119–31.

    Article  CAS  PubMed  Google Scholar 

  148. Pan JX, Short SR, Goff SA, Dice JF. Ubiquitin pools, ubiquitin mRNA levels, and ubiquitin-mediated proteolysis in aging human fibroblasts. Exp Gerontol. 1993;28:39–49.

    Article  CAS  PubMed  Google Scholar 

  149. Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E, et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016;167(1719–1733):e1712.

    Google Scholar 

  150. Kour S, Rath PC. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci. 2015;47:286–97.

    Article  CAS  PubMed  Google Scholar 

  151. Kour S, Rath PC. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci. 2015;46:55–66.

    Article  CAS  PubMed  Google Scholar 

  152. Kour S, Rath PC. Age-related expression of a repeat-rich intergenic long noncoding RNA in the rat brain. Mol Neurobiol. 2016;54:639–60.

    Article  PubMed  CAS  Google Scholar 

  153. Kour S, Rath PC. Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev. 2016;26:1–21.

    Article  CAS  PubMed  Google Scholar 

  154. Kour S, Rath PC. All-trans retinoic acid induces expression of a novel intergenic long noncoding RNA in adult rat primary hippocampal neurons. J Mol Neurosci. 2016;58:266–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Dr. Vikash Verma (University of Massachusetts, Amherst, USA) for critical reading of the manuscript and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshumali Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mittal, A., Rath, P.C. (2020). Protein Structure and Function in Aging and Age-Related Diseases. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9005-1_1

Download citation

Publish with us

Policies and ethics