Skip to main content

Comparison of Different Decision Tree Algorithms for Predicting the Heart Disease

  • Conference paper
  • First Online:
Machine Learning, Image Processing, Network Security and Data Sciences (MIND 2020)

Abstract

Data mining procedures are utilized to extract meaningful information for effective knowledge discovery. Decision tree, a classification method, is an efficient method for prediction. Seeing its importance, this paper compares decision tree algorithms to predict heart disease. The heart disease data sets are taken from Cleveland database, Hungarian database and Switzerland database to evaluate the performance measures. 60 data records for training and 50 data records for testing were taken as input for comparison. In order to evaluate the performance, fourteen attributes are considered to generate confusion matrices. The results exhibited that the algorithm that highest accuracy rates for predicting heart disease is Random forest, and thus can be considered as the best procedure for prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alehegn, M., Joshi, R., Mulay, P.: Analysis and prediction of diabetes mellitus using machine learning algorithm. Int. J. Pure Appl. Math. 118(9), 871–878 (2018)

    Google Scholar 

  2. Alickovic, E., Subasi, A.: Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier. J. Med. Syst. 40(4), 108 (2016). https://doi.org/10.1007/s10916-016-0467-8

    Article  Google Scholar 

  3. American Heart Association. Heart disease and stroke statistics 2018 (2017). http://www.heart.org/idc/groups/ahamahpublic/@wcm/@sop/@smd/documents/downloadable/ucm_491265.Pdf

  4. Amin, M.S., Chiam, Y.K., Varathan, K.D.: Identification of significant features and data mining techniques in predicting heart disease. Telematics Inform. 36, 82–93 (2019). https://doi.org/10.1016/j.tele.2018.11.007

    Article  Google Scholar 

  5. Azar, A.T., Elshazly, H.I., Hassanien, A.E., Elkorany, A.M.: A random forest classifier for lymph diseases. Comput. Methods Programs Biomed. 113(2), 465–473 (2014). https://doi.org/10.1016/j.cmpb.2013.11.004

    Article  Google Scholar 

  6. Bahrami, B., Shirvani, M.H.: Prediction and diagnosis of heart disease by data mining techniques. J. Multidisc. Eng. Sci. Technol. (JMEST). 2(2), 164–168 (2015)

    Google Scholar 

  7. Chaurasia, V., Pal, S.: Data mining approach to detect heart diseases. Int. J. Adv. Comput. Sci. Inf. Technol. (IJACSIT). 2, 56–66 (2014)

    Google Scholar 

  8. Chaurasia, V., Pal, S.: Early prediction of heart diseases using data mining techniques. Carib. J. Sci. Technol. 1, 208–217 (2013)

    Google Scholar 

  9. Fatima, M., Pasha, M.: Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl. 9(1), 1 (2017). https://doi.org/10.4236/jilsa.2017.91001

    Article  Google Scholar 

  10. Gomathi, S., Narayani, V.: Early prediction of systemic lupus erythematosus using hybrid K-Means J48 decision tree algorithm. Int. J. Eng. Technol. 7(1), 28–32 (2018)

    Google Scholar 

  11. Hasan, M.R., Abu Bakar, N.A., Siraj, F., Sainin, M.S., Hasan, S.: Single decision tree classifiers’ accuracy on medical data (2015)

    Google Scholar 

  12. https://timesofindia.indiatimes.com/india/heart-disease-deaths-rise-in-india-by-34-in-15-years/articleshow/64924601.cms

  13. Iyer, A., Jeyalatha, S., Sumbaly, R.: Diagnosis of diabetes using classification mining techniques (2015). arXiv preprint arXiv:1502.03774, https://doi.org/10.5121/ijdkp.2015.5101

  14. Jena, L., Kamila, N.K.: Distributed data mining classification algorithms for prediction of chronic-kidney-disease. Int. J. Emerg. Res. Manag. Technol. 4(11), 110–118 (2015)

    Google Scholar 

  15. Karabulut, E.M., Ibrikci, T.: Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. J. Med. Syst. 38(5), 50 (2014). https://doi.org/10.1007/s10916-014-0050-0

    Article  Google Scholar 

  16. Karthikeyan, T., Thangaraju, P.: Analysis of classification algorithms applied to hepatitis patients. Int. J. Comput. Appl. 62(15), 25–30 (2013)

    Google Scholar 

  17. Kasar, S.L., Joshi, M.S.: Analysis of multi-lead ECG signals using decision tree algorithms. Int. J. Comput. Appl. 134(16) (2016). https://doi.org/10.5120/ijca2016908206

  18. Kuzey, C., Karaman, A.S., Akman, E.: Elucidating the impact of visa regimes: a decision tree analysis. Tourism Manag. Perspect. 29, 148–156 (2019). https://doi.org/10.1016/j.tmp.2018.11.008

    Article  Google Scholar 

  19. Lohita, K., Sree, A.A., Poojitha, D., Devi, T.R., Umamakeswari, A.: Performance analysis of various data mining techniques in the prediction of heart disease. Indian J. Sci. Technol. 8(35), 1–7 (2015)

    Article  Google Scholar 

  20. Masethe, H.D., Masethe, M.A.: Prediction of heart disease using classification algorithms. In: Proceedings of the World Congress on Engineering and Computer Science, vol. 2, pp. 22–24 (2014)

    Google Scholar 

  21. Masetic, Z., Subasi, A.: Congestive heart failure detection using random forest classifier. Comput. Methods Programs Biomed. 130, 54–64 (2016). https://doi.org/10.1016/j.cmpb.2016.03.020

    Article  Google Scholar 

  22. Mathan, K., Kumar, P.M., Panchatcharam, P., Manogaran, G., Varadharajan, R.: A novel Gini index decision tree data mining method with neural network classifiers for prediction of heart disease. Des. Autom. Embedded Syst. 22(3), 225–242 (2018). https://doi.org/10.1007/s10617-018-9205-4

    Article  Google Scholar 

  23. Nahar, N., Ara, F.: Liver disease prediction by using different decision tree techniques. Int. J. Data Min. Knowl. Manag. Process (IJDKP) 8, 1–9 (2018). https://doi.org/10.5121/ijdkp.2018.8201

    Article  Google Scholar 

  24. Novakovic, J.D., Veljovic, A.: Adaboost as classifier ensemble in classification problems. In: Proceedings Infoteh-Jahorina, pp. 616–620 (2014)

    Google Scholar 

  25. Olayinka, T.C., Chiemeke, S.C.: Predicting paediatric malaria occurrence using classification algorithm in data mining. J. Adv. Math. Comput. Sci. 31(4), 1–10 (2019). https://doi.org/10.9734/jamcs/2019/v31i430118

    Article  Google Scholar 

  26. Pachauri, G., Sharma, S.: Anomaly detection in medical wireless sensor networks using machine learning algorithms. Procedia Comput. Sci. 70, 325–333 (2015). https://doi.org/10.1016/j.procs.2015.10.026

    Article  Google Scholar 

  27. Pandey, A.K., Pandey, P., Jaiswal, K.L., Sen, A.K.: A heart disease prediction model using decision tree. IOSR J. Comput. Eng. (IOSR-JCE) 12(6), 83–86 (2013)

    Article  Google Scholar 

  28. Parimala, C., Porkodi, R.: Classification algorithms in data mining: a survey. Proc. Int. J. Sci. Res. Comput. Sci. 3, 349–355 (2018)

    Google Scholar 

  29. Pathak, A.K., Arul Valan, J.: A predictive model for heart disease diagnosis using fuzzy logic and decision tree. In: Elçi, A., Sa, P.K., Modi, C.N., Olague, G., Sahoo, M.N., Bakshi, S. (eds.) Smart Computing Paradigms: New Progresses and Challenges. AISC, vol. 767, pp. 131–140. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9680-9_10

    Chapter  Google Scholar 

  30. Paxton, R.J., et al.: An exploratory decision tree analysis to predict physical activity compliance rates in breast cancer survivors. Ethn. Health. 24(7), 754–766 (2019). https://doi.org/10.1080/13557858.2017.1378805

    Article  Google Scholar 

  31. Pei, D., Zhang, C., Quan, Y., Guo, Q.: Identification of potential type II diabetes in a Chinese population with a sensitive decision tree approach. J. Diabetes Res. (2019). https://doi.org/10.1155/2019/4248218

    Article  Google Scholar 

  32. Perveen, S., Shahbaz, M., Guergachi, A., Keshavjee, K.: Performance analysis of data mining classification techniques to predict diabetes. Procedia Comput. Sci. 82, 115–121 (2016). https://doi.org/10.1016/j.procs.2016.04.016

    Article  Google Scholar 

  33. Rizvi, S., Rienties, B., Khoja, S.A.: The role of demographics in online learning; a decision tree based approach. Comput. Educ. 137, 32–47 (2019). https://doi.org/10.1016/j.compedu.2019.04.001

    Article  Google Scholar 

  34. Rondović, B., Djuričković, T., Kašćelan, L.: Drivers of E-business diffusion in tourism: a decision tree approach. J. Theor. Appl. Electron. Commer. Res. 14(1), 30–50 (2019). https://doi.org/10.4067/S0718-18762019000100104

    Article  Google Scholar 

  35. Sa, S.: Intelligent heart disease prediction system using data mining techniques. Int. J. Healthcare Biomed. Res. 1, 94–101 (2013)

    Google Scholar 

  36. Salih, A.S.M., Abraham, A.: Intelligent decision support for real time health care monitoring system. In: Abraham, A., Krömer, P., Snasel, V. (eds.) Afro-European Conference for Industrial Advancement. AISC, vol. 334, pp. 183–192. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13572-4_15

    Chapter  Google Scholar 

  37. Saxena, R., Johri, A., Deep, V., Sharma, P.: Heart diseases prediction system using CHC-TSS evolutionary, KNN, and decision tree classification algorithm. In: Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S. (eds.) Emerging Technologies in Data Mining and Information Security, vol. 813, pp. 809–819. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1498-8_71

    Chapter  Google Scholar 

  38. Chandra Shekar, K., Chandra, P., Venugopala Rao, K.: An ensemble classifier characterized by genetic algorithm with decision tree for the prophecy of heart disease. In: Saini, H.S., Sayal, R., Govardhan, A., Buyya, R. (eds.) Innovations in Computer Science and Engineering. LNNS, vol. 74, pp. 9–15. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-7082-3_2

    Chapter  Google Scholar 

  39. Shrivas, A.K., Yadu, R.K.: An effective prediction factors for coronary heart disease using data mining based classification technique. Int. J. Recent Innov. Trends Comput. Commun. 5(5), 813–816 (2017)

    Google Scholar 

  40. Skrbinjek, V., Dermol, V.: Predicting students’ satisfaction using a decision tree. Tert. Educ. Manag. 25(2), 101–113 (2019). https://doi.org/10.1007/s11233-018-09018-5

    Article  Google Scholar 

  41. Son, C.S., Kim, Y.N., Kim, H.S., Park, H.S., Kim, M.S.: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. J. Biomed. Inform. 45(5), 999–1008 (2012)

    Article  Google Scholar 

  42. Sturts, A., Slotman, G.: Predischarge decision tree analysis predicts 30-day congestive heart failure readmission. Crit. Care Med. 48(1), 116 (2020). https://doi.org/10.1097/01.ccm.0000619424.34362.bc

    Article  Google Scholar 

  43. Vallée, A., Petruescu, L., Kretz, S., Safar, M.E., Blacher, J.: Added value of aortic pulse wave velocity index in a predictive diagnosis decision tree of coronary heart disease. Am. J. Hypertens. 32(4), 375–383 (2019). https://doi.org/10.1093/ajh/hpz004

    Article  Google Scholar 

  44. Vijiyarani, S., Sudha, S.: An efficient classification tree technique for heart disease prediction. In: International Conference on Research Trends in Computer Technologies (ICRTCT-2013) Proceedings published in International Journal of Computer Applications (IJCA), vol. 201, pp. 0975–8887 (2013)

    Google Scholar 

  45. Wu, C.S.M., Badshah, M., Bhagwat, V.: Heart disease prediction using data mining techniques. In: Proceedings of the 2019 2nd International Conference on Data Science and Information Technology, pp. 7–11 (2019). https://doi.org/10.1145/3352411.3352413

  46. Yang, S., Guo, J.Z., Jin, J.W.: An improved Id3 algorithm for medical data classification. Comput. Electr. Eng. 65, 474–487 (2018). https://doi.org/10.1016/j.compeleceng.2017.08.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Saraswat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saraswat, D., Singh, P. (2020). Comparison of Different Decision Tree Algorithms for Predicting the Heart Disease. In: Bhattacharjee, A., Borgohain, S., Soni, B., Verma, G., Gao, XZ. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. MIND 2020. Communications in Computer and Information Science, vol 1241. Springer, Singapore. https://doi.org/10.1007/978-981-15-6318-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6318-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6317-1

  • Online ISBN: 978-981-15-6318-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics