Skip to main content

Symmetry Indices as a Key to Finding Matrices of Cyclic Structure for Noise-Immune Coding

  • Conference paper
  • First Online:
Intelligent Decision Technologies (IDT 2020)

Abstract

The paper discusses methods for assessing the symmetries of Hadamard matrices and special quasi-orthogonal matrices of circulant and two circulant structures used as the basis for searching for noise-resistant codes. Such codes, obtained from matrix rows intended for use in open communications, expand the basic and general theory of signal coding and ensure that the requirements for contemporary telecommunication systems are met. Definitions of the indices of symmetry, asymmetry, and symmetry defect of special matrices are given. The connection of symmetric and antisymmetric circulant matrices with primes, compound numbers, and powers of a prime number is shown. Examples of two circulant matrices that are optimal by their determinant, as well as special circulant matrices, are given. The maximum orders of the considered matrices of symmetric structures are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang,, R.: Introduction to Orthogonal Transforms with Applications in Data Processing and Analysis, p. 504. Cambridge University Press (2010)

    Google Scholar 

  2. Ahmed, N., Rao, K.R.: Orthogonal Transforms for Digital Signal Processing. p. 263. Springer Berlin (1975)

    Google Scholar 

  3. Klemm, R. (ed.): Novel Radar Techniques and Applications, vol. 1, Real Aperture Array Radar, Imaging Radar, and Passive and Multistatic Radar, p. 951. Scitech Publishing, London (2017)

    Google Scholar 

  4. NagaJyothi, A., Rajeswari, K.: Raja Generation and Implementation of Barker and Nested Binary Codes. J. Electr. Electron. Eng. 8(2), 33–41 (2013)

    Google Scholar 

  5. Proakis, J., Salehi M.: Digital communications, P. 1170. McGraw-Hill, Singapore (2008)

    Google Scholar 

  6. Levanon, N., Mozeson, E.: Radar Signals. p. 411. Wiley (2004)

    Google Scholar 

  7. IEEE802.11 Official site – URL: www.ieee802.org

  8. Borwein, P., Mossinghoff, M.: Wieferich pairs and Barker sequences, II. LMS J. Comput. Math. 17(1), 24–32 (2014)

    Article  MathSciNet  Google Scholar 

  9. Sergeev, A., Nenashev, V., Vostrikov, A., Shepeta, A., Kurtyanik, D.: Discovering and Analyzing Binary Codes Based on Monocyclic Quasi-Orthogonal Matrices. Smart Innov., Syst. Technol. 143, 113–123 (2019)

    Article  Google Scholar 

  10. Sergeev, M.B., Nenashev V.A., Sergeev A.M.: Nested code sequences of Barker-Mersenne-Raghavarao, Informatsionno-upravliaiushchie sistemy (Information and Control Systems), 3, 71–81 (In Russian) (2019)

    Google Scholar 

  11. Ryser, H.J.: Combinatorial mathematics. The Carus Mathematical Monographs, no. 14. Published by The Mathematical Association of America; distributed by Wiley, New York (1963)

    Google Scholar 

  12. Schmidt, B.: Towards Ryser’s Conjecture. European Congress of Mathematics. Progress in Mathematics, vol 201, pp. 533–541. Birkhäuser, Basel (2001)

    Google Scholar 

  13. Euler, R., Gallardo, L.H., Rahavandrainy, O.: Eigenvalues of circulant matrices and aconjecture of ryser. Kragujevac J. Math.- 45(5), 751–759 (2021)

    Google Scholar 

  14. Balonin, N.A., Sergeev, M.B.: Quasi-orthogonal local maximum determinant matrices. Appl. Math. Sci. 9(6), 285–293 (2015)

    Google Scholar 

  15. Sergeev, A.M.: Generalized mersenne matrices and balonin’s conjecture. Autom. Control Comput. Sci. 48(4), 214–220 (2014)

    Article  Google Scholar 

  16. Balonin, N.A., Djokovic, D.Z.: Symmetry of Two-Circulant Hadamard Matrices and Periodic Golay Pairs, Informatsionno-upravliaiushchie sistemy (Information and Control Systems), 3. 2–16 (2015)

    Google Scholar 

  17. Sergeev, A., Blaunstein N.: Orthogonal Matrices with Symmetrical Structures for Image Processing, Informatsionno-upravliaiushchie sistemy (Information and Control Systems), 6(91), 2–8 (2017)

    Google Scholar 

  18. Hall, M.: A survey of difference sets. Proc. Amer. Math. Soc. 7, 975–986 (1956)

    Google Scholar 

  19. Hadamard, J.: Resolution d’une question relative aux determinants. Bull. des Sci. Math. 17, 240–246 (1893)

    MATH  Google Scholar 

  20. Balonin, N.A., Sergeev M.B.: Weighted Conference Matrix Generalizing Belevich Matrix at the 22nd Order, Informatsionno-upravliaiushchie sistemy (Information and Control Systems), 5, 97–98 (2013)

    Google Scholar 

Download references

Acknowledgement

The reported study was funded by RFBR, project number 19-29-06029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Vostrikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sergeev, A., Sergeev, M., Balonin, N., Vostrikov, A. (2020). Symmetry Indices as a Key to Finding Matrices of Cyclic Structure for Noise-Immune Coding. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies. IDT 2020. Smart Innovation, Systems and Technologies, vol 193. Springer, Singapore. https://doi.org/10.1007/978-981-15-5925-9_19

Download citation

Publish with us

Policies and ethics