Skip to main content

Cuckoo Search Based Backcalculation Algorithm for Estimating Layer Properties of Full-Depth Flexible Pavements

  • Chapter
  • First Online:
Applications of Cuckoo Search Algorithm and its Variants

Part of the book series: Springer Tracts in Nature-Inspired Computing ((STNIC))

Abstract

This study introduces a backcalculation algorithm to estimate the material properties of the full-depth asphalt pavements. The proposed algorithm, namely CS-ANN, uses an Artificial Neural Network (ANN) based forward response engine, which is developed from the solutions of nonlinear finite element analysis to calculate the deflections mathematically. In the backward phase of the method, Cuckoo Search (CS), is utilized to search for the layer moduli values. The performance of the proposed method is investigated by analyzing the synthetically calculated deflections by a finite element based software and deflection data obtained from the field. In addition, to evaluate the searching capability of CS, optimization algorithms widely used in pavement backcalculation; Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Gravitational Search Algorithm (GSA), are employed for comparison purposes. Obtained results indicate that the proposed backcalculation approach is able to determine stiffness-related layer properties in an accurate and rapid manner. In addition, CS presents a promising performance in reaching the optimum solutions that are better than GA, PSO, and GSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fwa TF (2006) The handbook of engineering of highway. CRC Press

    Google Scholar 

  2. Goktepe AB, Agar E, Lav AH (2006) Advances in backcalculating the mechanical properties of flexible pavements. Adv Eng Softw 37:421–431

    Article  Google Scholar 

  3. Sivaneswaran N, Kramer, Steven L, Mahoney JP (1991) Advanced backcalculation using a nonlinear least squares optimization technique. Trans Res Rec 93–102

    Google Scholar 

  4. Meier R, Rix G (1993) An initial study of surface wave inversion using artificial neural networks. Geotech Test J 16:425–431

    Article  Google Scholar 

  5. Quintus HL, Von Bush AJ, Baladi GY (1993) Nondestructive testing of pavements and backcalculation of moduli: second volume. ASTM

    Google Scholar 

  6. Bush AJ, Baladi GY (1988) Nondestructive testing of pavements and backcalculation of moduli. ASTM

    Google Scholar 

  7. Van Deusen D (1996) Selection of flexible backcalculation software for the minnesota road research project. Minnesota

    Google Scholar 

  8. Reddy MA, Reddy KS, Pandey BB (2004) Selection of genetic algorithm parameters for backcalculation of pavement moduli. Int J Pavement Eng 5:81–90

    Article  Google Scholar 

  9. Kim N, Im S-B (2005) A comparative study on measured versus Predicted pavement responses from falling weight deflectometer (FWD) measurements. KSCE J Civ Eng 9:91–96

    Article  Google Scholar 

  10. Sangghaleh A, Pan E, Green R et al (2013) Backcalculation of pavement layer elastic modulus and thickness with measurement errors. Int J Pavement Eng 15:521–531

    Article  Google Scholar 

  11. Fileccia Scimemi G, Turetta T, Celauro C (2016) Backcalculation of airport pavement moduli and thickness using the Levy Ant Colony Optimization Algorithm. Constr Build Mater 119:288–295

    Article  Google Scholar 

  12. Kim M (2007) Three-dimensional finite element analysis of flexible pavements considering nonlinear pavement foundation behavior. PhD Thesis, University of Illinois at Urbana-Champaign

    Google Scholar 

  13. Mulungye RM, Owende PMO, Mellon K (2007) Finite element modelling of flexible pavements on soft soil subgrades. Mater Des 28:739–756

    Article  Google Scholar 

  14. Gopalakrishnan K, Agrawal A, Ceylan H et al (2013) Knowledge discovery and data mining in pavement inverse analysis. Transport 28:1–10

    Article  Google Scholar 

  15. Karadelis JN (2000) A numerical model for the computation of concrete pavement moduli: a non-destructive testing and assessment method. NDT E Int 33:77–84

    Article  Google Scholar 

  16. Picoux B, El Ayadi A, Petit C (2009) Dynamic response of a flexible pavement submitted by impulsive loading. Soil Dyn Earthq Eng 29:845–854

    Article  Google Scholar 

  17. Dong Q, Hachiya Y, Takahashi O et al (2002) An efficient backcalculation algorithm of time domain for large-scale pavement structures using Ritz vectors. Finite Elem Anal Des 38:1131–1150

    Article  MATH  Google Scholar 

  18. Li M, Wang H (2019) Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters. Int J Pavement Eng 20:490–498

    Article  Google Scholar 

  19. Yi J-H, Mun S (2009) Backcalculating pavement structural properties using a Nelder-Mead simplex search. Int J Numer Anal Methods Geomech 33:1389–1406

    Article  MATH  Google Scholar 

  20. Zaabar I, Chatti K, Lee H, Lajnef N (2014) Backcalculation of asphalt concrete modulus master curve from field-measured falling weight deflectometer data. Transp Res Rec J Transp Res Board 2457:80–92

    Article  Google Scholar 

  21. Varma S, Emin Kutay M (2016) Backcalculation of viscoelastic and nonlinear flexible pavement layer properties from falling weight deflections. Int J Pavement Eng 17:388–402

    Article  Google Scholar 

  22. Lav A, Goktepe A, Lav M (2009) Backcalculation of flexible pavements using soft computing. Intell Soft Comput Infrastruct Syst Eng 67–106

    Google Scholar 

  23. Meier R, Rix G (1995) Backcalculation of flexible pavement moduli from dynamic deflection basins using artificial neural networks. Transp Res Rec 1473:72–81

    Google Scholar 

  24. Meier R, Rix G (1994) Backcalculation of flexible pavement moduli using artificial neural networks. Transp Res Rec 1448:75–82

    Google Scholar 

  25. Saltan M, Tigdemir M, Karasahin M (2002) Artificial neural network application for flexible pavement thickness modeling. Turkish J Eng Environ Sci 26:243–248

    Google Scholar 

  26. Saltan M, Terzi S, Küçüksille EU (2011) Backcalculation of pavement layer moduli and Poisson’s ratio using data mining. Expert Syst Appl 38:2600–2608

    Article  Google Scholar 

  27. Ceylan H, Gopalakrishnan K (2006) Artificial neural network models incorporating unbound material nonlinearity for rapid prediction of critical pavement responses and layer moduli. Int Cent Aggreg Res 14th Annu Symp 1–22

    Google Scholar 

  28. Ceylan H, Guclu A, Tutumluer E, Thompson MR (2005) Backcalculation of full-depth asphalt pavement layer moduli considering nonlinear stress-dependent subgrade behavior. Int J Pavement Eng 6:171–182

    Article  Google Scholar 

  29. Pekcan O, Tutumluer E, Thompson M (2008) Artificial neural network based backcalculation of conventional flexible pavements on lime stabilized soils. In: Proceedings of the 12th international conference of international association for computer methods and advances in geomechanics (IACMAG), 1–6 Oct 2008, Goa, India, pp 1647–1654

    Google Scholar 

  30. Sharma S, Das A (2008) Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network. Can J Civ Eng 35:57–66

    Article  Google Scholar 

  31. Rakesh N, Jain A, Reddy MA, Reddy KS (2006) Artificial neural networks—genetic algorithm based model for backcalculation of pavement layer moduli. Int J Pavement Eng 7:221–230

    Article  Google Scholar 

  32. Gopalakrishnan K (2009) Backcalculation of non-linear pavement moduli using finite-element based neuro-genetic hybrid optimization. Open Civ Eng J 3:83–92

    Article  Google Scholar 

  33. Pekcan O (2011) Soft computing based parameter identification in pavements and geomechanical systems. PhD Thesis, University of Illinois at Urbana-Champaign, Urbana (IL)

    Google Scholar 

  34. Harichandran R, Mahmood T (1993) Modified Newton algorithm for backcalculation of pavement layer properties. Transp Res Rec J Transp Res Board 1384:15–22

    Google Scholar 

  35. Washington State Department of Transportation (2005) Everseries user’s guide pavement analysis computer software and case studies

    Google Scholar 

  36. Fwa TF, Tan CY, Chan WT (1997) Backcalculation analysis of pavement-layer moduli using genetic algorithms. Transp Res Rec 1570:134–142

    Article  Google Scholar 

  37. Hu K-F, Jiang K-P, Chang D-W (2007) Study of dynamic backcalculation program with genetic algorithms for FWD on pavements. Tamkang J Sci Eng 10:297–305

    Google Scholar 

  38. Tsai B, Harvey J, Monismith C (2009) Case studies of asphalt pavement analysis/design with application of the genetic algorithm. In: Gopalakrishnan K, Ceylan H, Nii OA-O (eds) Intelligent and soft computing in infrastructure systems engineering. Springer, Berlin, Heidelberg, pp 205–238

    Chapter  Google Scholar 

  39. Nazzal M, Tatari O (2013) Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus. Int J Pavement Eng 14:364–373

    Article  Google Scholar 

  40. Gopalakrishnan K (2009) Backcalculation of pavement moduli using bio-inspired hybrid metaheuristics and cooperative strategies. In: Proceedings of the 2009 mid-continent transportation research symposium, Ames, IA

    Google Scholar 

  41. Gopalakrishnan K, Khaitan SK (2010) Development of an intelligent pavement analysis toolbox. Proc ICE—Transp 163:211–221

    Google Scholar 

  42. Öcal A (2014) Backcalculation of pavement layer properties using artificial neural network based gravitational search algorithm. M.Sc. Thesis, Middle East Technical University

    Google Scholar 

  43. Yang X-S, Deb S (2009) Cuckoo Search via Levy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214

    Google Scholar 

  44. Li Z, Dey N, Ashour AS, Tang Q (2018) Discrete cuckoo search algorithms for two-sided robotic assembly line balancing problem. Neural Comput Appl 30:2685–2696

    Article  Google Scholar 

  45. Chandrasekaran K, Simon SP (2012) Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm Evol Comput 5:1–16

    Article  Google Scholar 

  46. Laha D, Gupta JND (2018) An improved cuckoo search algorithm for scheduling jobs on identical parallel machines. Comput Ind Eng 126:348–360

    Article  Google Scholar 

  47. Chakraborty S, Dey N, Samanta S et al (2017) Optimization of non-rigid demons registration using cuckoo search algorithm. Cogn Comput 9:817–826

    Article  Google Scholar 

  48. Binh HTT, Hanh NT, Van Quan L, Dey N (2018) Improved Cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Comput Appl 30:2305–2317

    Article  Google Scholar 

  49. Yang X-S, Deb S (2010) Engineering optimisation by Cuckoo search. Int J Math Model Numer Optim 1:330–343

    MATH  Google Scholar 

  50. Kaveh A, Bakhshpoori T, Ashoory M (2012) An efficient optimization procedure based on Cuckoo search algorithm for practical design of. Int J Optim Civ Eng 2:1–14

    Google Scholar 

  51. Kaveh A, Bakhshpoori T (2013) Optimum design of steel frames using Cuckoo search algorithm with Lévy flights. Struct Des Tall Spec Build 22:1023–1036

    Article  Google Scholar 

  52. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  53. Gandomi AH, Talatahari S, Yang X-S, Deb S (2013) Design optimization of truss structures using Cuckoo search algorithm. Struct Des Tall Spec Build 22:1330–1349

    Article  Google Scholar 

  54. Thompson MR, Robnett QL (1979) Resilient properties of subgrade soils. J Transp Eng ASCE 105:71–89

    Article  Google Scholar 

  55. Ceylan H, Bayrak MB, Gopalakrishnan K (2014) Neural networks applications in pavement engineering: a recent survey. Int J Pavement Res Technol 7:434–444

    Google Scholar 

  56. Ghaboussi J (2001) Biologically inspired soft computing methods in structural mechanics and engineering. Struct Eng Mech 11:485–502

    Article  Google Scholar 

  57. Payne RB (2005) The Cuckoos. Oxford University Press

    Google Scholar 

  58. Yang X (2010) Nature-Inspired metaheuristic algorithms, 2nd edn. Luniver Press

    Google Scholar 

  59. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, Inc

    Google Scholar 

  60. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

    Google Scholar 

  61. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  62. FHWA LTPP InfoPave (2019). https://infopave.fhwa.dot.gov/. Accessed 18 Aug 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Pekcan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Öcal, A., Pekcan, O. (2021). Cuckoo Search Based Backcalculation Algorithm for Estimating Layer Properties of Full-Depth Flexible Pavements. In: Dey, N. (eds) Applications of Cuckoo Search Algorithm and its Variants. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-15-5163-5_10

Download citation

Publish with us

Policies and ethics