Skip to main content

Damage Detection in Smart Composite Plates

  • Chapter
  • First Online:
Structural Health Monitoring
  • 504 Accesses

Abstract

In this chapter, a damage detection approach for a smart composite structure is presented. A brief background on smart structures is provided in Sect. 5.1. Smart structural systems have gained importance in recent years and have found applications in aerospace, automotive, and space applications [1,2,3,4]. A structure can be made smart by introducing sensors, actuators, and information processing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chopra, I. (2002). Review of state of art of smart structures and integrated systems. AIAA Journal, 40, 2145–2187.

    Article  Google Scholar 

  2. Irschik, H. (2002). A review on static and dynamic shape control of structures by piezoelectric actuation. Engineering Structures, 24, 5–11.

    Article  Google Scholar 

  3. Hurlebausa, H., & Gaul, L. (2006). Smart structure dynamics. Mechanical Systems and Signal Processing, 20, 255–281.

    Article  Google Scholar 

  4. Loewy, R. G. (1997). Recent developments in smart structures with aeronautical applications smart material. Structure, 6, 11–42.

    Google Scholar 

  5. Umesh, K., & Ganguli, R. (2011). Composite material and piezoelectric coefficient uncertainty effects on structural health monitoring using feedback control gains as damage indicators. Structural Health Monitoring, 10, 115–129.

    Article  Google Scholar 

  6. Ihn, J. B., & Chang, F. K. (2008). Pitch-catch active sensing methods in structural health monitoring for aircraft structures. Structural Health Monitoring, 7(1), 5–19.

    Article  Google Scholar 

  7. Auweraer, H. V., & Peeters, B. (2003). International research projects on structural health monitoring: An overview. Structural Health Monitoring, 2(4), 341–358.

    Article  Google Scholar 

  8. Chang, P. C., Flatau, A., & Liu, S. C. (2003). Review paper: Health monitoring of civil infrastructure. Structural Health Monitoring, 2(3), 257–267.

    Article  Google Scholar 

  9. Worden, K., & Dulieu-Barton, J. M. (2004). An overview of intelligent fault detection in systems and structures. Structural Health Monitoring, 3(1), 85–98.

    Article  Google Scholar 

  10. Carden, E. P., & Fanning, P. (2004). Vibration based condition monitoring: A review. Structural Health Monitoring, 3(4), 355–377.

    Article  Google Scholar 

  11. Mal, A., Ricci, F., Banerjee, S., & Shih, F. (2005). A conceptual structural health monitoring system based on vibration and wave propagation. Structural Health Monitoring, 4(3), 283–293.

    Article  Google Scholar 

  12. Raghavan, A., & Cesnik, C. E. S. (2006). 3-D Elasticity-based modeling of anisotropic piezocomposite transducers for guided wave structural health monitoring. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1–4 May 2006. Newport, Rhode Island, AIAA, 2006–1793.

    Google Scholar 

  13. Chrysochoidis, N. A., & Saravanos, D. A. (2009). High-frequency dispersion characteristics of smart delaminated composite beams. Journal of Intelligent Material Systems and Structures, 20(9), 1057–1068.

    Google Scholar 

  14. Qing, X. P., Beard, S. J., Kumar, A., Ooi, T. K., & Chang, F. K. (2007). Built-in sensor network for structural health monitoring of composite structure. Journal of Intelligent Material Systems and Structures, 18(1), 39–49.

    Article  Google Scholar 

  15. Hu, N., Fukunaga, H., & Kameyama, M. (2006). Identification of delaminations in composite laminates. Journal of Intelligent Material Systems and Structures, 17(8–9), 671–683.

    Article  Google Scholar 

  16. Kirikera, G. R., Shinde, V., Schulz, M. J., Ghoshal, A., Sundaresan, M. J., Allemang, R. J., et al. (2008). A structural neural system for real-time health monitoring of composite materials. Structural Health Monitoring, 7(1), 65–83.

    Google Scholar 

  17. Su, Z., & Ye, L. (2004). Fundamental lamb mode-based delamination detection for CF/EP composite laminates using distributed piezoelectrics. Structural Health Monitoring, 3(1), 43–68.

    Article  Google Scholar 

  18. Ghoshal, A., Chattopadhyay, A., Schulz, M. J., Thornburgh, R., & Waldron, K. (2003). Experimental investigation of damage detection in composite material structures using a laser vibrometer and piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 14(8), 521–537.

    Article  Google Scholar 

  19. Hamey, C. S., Lestari, W., Qiao, P., & Song, G. (2004). Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes. Structural Health Monitoring, 3(4), 333–353.

    Article  Google Scholar 

  20. Giurgiutiu, V., & Zagrai, A. (2005). Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method. Structural Health Monitoring, 4(2), 99–118.

    Article  Google Scholar 

  21. Sankararaman, S., & Mahadevan, S. (2009). Uncertainty quantification in structural health monitoring. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th, 4–7 May 2009. Palm Springs, California, AIAA, 2009–2377.

    Google Scholar 

  22. Pawar, P. M., & Ganguli, R. (2003). Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Computer Methods in Applied Mechanics and Engineering, 192(16–18), 2031–2057.

    Article  MATH  Google Scholar 

  23. Petryna, Y. S., & Kratzig, W. B. (2005). Compliance-based structural damage measure and its sensitivity to uncertainties. Computers and Structures, 83, 1113–1133.

    Article  Google Scholar 

  24. Chandrashekhar, M., & Ganguli, R. (2009). Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation. Mechanical Systems and Signal Processing, 23, 384–404.

    Article  Google Scholar 

  25. Chandrashekhar, M., & Ganguli, R. (2009). Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic. Journal of Sound and Vibration, 326, 939–957.

    Article  Google Scholar 

  26. Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815.

    Article  Google Scholar 

  27. Lew, J. S. (2008). Reduction of uncertainty effect on damage identification using feedback control. Journal of Sound and Vibration, 318, 903–910.

    Article  Google Scholar 

  28. Murugan, S., Ganguli, R., & Harursampath, D. (2008). Aeroelastic response of composite helicopter rotor with random material properties. Journal of Aircraft, 45(1), 306–322.

    Article  Google Scholar 

  29. Onkar, A. K., Upadhyay, C. S., & Yadav, D. (2007). Stochastic finite element buckling analysis of laminated plates with circular cutout under uniaxial compression. Journal of Applied Mechanics, 74, 798–809.

    Article  Google Scholar 

  30. Liang, Y. C., & Hwu, C. (1996). Electromechanical analysis of defects in piezoelectric materials. Smart Materials and Structures, 5(3), 314–320.

    Article  Google Scholar 

  31. Burianova, L., Kopal, A., & Nosek, J. (2003). Characterization of advanced piezoelectric materials in the wide temperature range. Materials Science and Engineering B, 99, 187–191.

    Article  Google Scholar 

  32. Alguero, M., Cheng, B. L., Guiu, F., Reece, M. J., Poole, M., & Aiford, N. (2001). Degradation of the \(d_{33}\) piezoelectric coefficient for PZT ceramics under static and cyclic compressive loading. Journal of European Ceramic Society, 21, 1437–1440.

    Article  Google Scholar 

  33. Li, F., Xu, Z., Wei, X. Y., & Yao, X. (2009). Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method. Journal of Physics D: Applied Physics, 42(9), 095417.

    Article  Google Scholar 

  34. Rabinovitch, O., & Vinson, J. R. (2002). Adhesive layer effects in surface-mounted piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 13(11), 689–704.

    Article  Google Scholar 

  35. Park, J. M., Kim, D. S., & Han, S. B. (2000). Properties of interfacial adhesion for vibration controllability of composite materials as smart structures. Composites Science and Technology, 60(10), 1953–1963.

    Article  Google Scholar 

  36. Araujo, A. L., Soares, C. M. M., Herskovits, J., & Pedersen, P. (2009). Estimation of piezoelastic and viscoelastic properties in laminated structures. Composite Structures, 87, 168–174.

    Article  Google Scholar 

  37. Palma, R., Rus, G., & Gallego, R. (2009). Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mechanics of Materials, 41, 1000–1016.

    Article  Google Scholar 

  38. Ghanem, R. (1999). Ingredients for a general purpose stochastic finite elements implementation. Computer Methods in Applied Mechanics and Engineering, 168, 19–34.

    Article  MathSciNet  MATH  Google Scholar 

  39. Stefanou, G. (2009). The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering, 198, 1031–1051.

    Article  MATH  Google Scholar 

  40. Crestaux, T., Maitre, O. L., & Martinez, J. M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering and System Safety, 94, 1161–1172.

    Article  Google Scholar 

  41. Guoliang, J., Lin, C., & Jiamei, D. (1993). Monte Carlo finite element method of structure reliability analysis. Reliability Engineering and System Safety, 40, 77–83.

    Article  Google Scholar 

  42. Vinckenroy, G. V., & de Wilde, W. P. (1995). The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behavior of composite materials structural components. Composite Structures, 32, 247–253.

    Article  Google Scholar 

  43. Carrere, N., Rollet, Y., Leroy, F. H., & Maire, J. F. (2009). Efficient structural computations with parameters uncertainty for composite applications. Composites Science and Technology, 69, 1328–1333.

    Article  Google Scholar 

  44. Marseguerra, M., & Zio, E. (2009). Monte Carlo simulation for model-based fault diagnosis in dynamic systems. Reliability Engineering and System Safety, 94, 180–186.

    Article  Google Scholar 

  45. Allegri, G., Corradi, S., & Marchetti, M. (2006). Stochastic analysis of the vibrations of an uncertain composite truss for space applications. Composites Science and Technology, 66, 273–282.

    Article  Google Scholar 

  46. Fishman, G. S. (1996). Monte Carlo: Concepts, algorithms, and applications. New York: Springer.

    Google Scholar 

  47. Chandrashekhar, M., & Ganguli, R. (2009). Structural damage detection using modal curvature and fuzzy logic. Structural Health Monitoring, 8(4), 267–282.

    Article  Google Scholar 

  48. Zhao, J., Tang, J., & Wang, K. W. (2008). Enhanced statistical damage identification using frequency-shift information with tunable piezoelectric transducer circuitry. Smart Materials and Structures, 17, 065003.

    Google Scholar 

  49. Umesh, K., & Ganguli, R. (2009). Shape and vibration control of smart composite plate with matrix cracks. Smart Materials and Structures, 18, 025002.

    Google Scholar 

  50. Pawar, P. M., & Ganguli, R. (2005). On the effect of matrix cracks in composite helicopter rotor blades. Composites Science and Technology, 65, 581–594.

    Article  Google Scholar 

  51. Liu, S., & Chang, F. K. (1994). Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter. Journal of Composite Materials, 28(10), 940–977.

    Article  Google Scholar 

  52. Johnson, P., & Chang, F. K. (2001). Characterization of matrix crack-induced laminate failure—Part I: Experiments. Journal of Composite Materials, 35(22), 2009–2035.

    Article  Google Scholar 

  53. Johnson, P., & Chang, F. K. (2001). Characterization of matrix crack-induced laminate failure—Part II: Analysis and verifications. Journal of Composite Materials, 35(22), 2037–2074.

    Google Scholar 

  54. Chandrashekhara, K., & Agarval, A. N. (1993). Active vibration control of laminated composite plates using piezoelectric devices: A finite element approach. Journal of Intelligent Material Systems and Structures, 4, 496–508.

    Article  Google Scholar 

  55. Adolfsson, E., & Gudmundson, P. (1997). Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks. International Journal of Solids and Structures, 34(16), 2035–2060.

    Article  MATH  Google Scholar 

  56. Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6, 583–591.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Ganguli .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganguli, R. (2020). Damage Detection in Smart Composite Plates. In: Structural Health Monitoring. Springer, Singapore. https://doi.org/10.1007/978-981-15-4988-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4988-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4987-8

  • Online ISBN: 978-981-15-4988-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics