Skip to main content

Long-Term Trend and Interannual to Decadal Variability in the Sea of Okhotsk

  • Chapter
  • First Online:
Changing Asia-Pacific Marginal Seas

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

Abstract

In this article, we describe physical aspects of long-term variations in the Sea of Okhotsk. The maximum sea ice extent (MSIE) in the Sea of Okhotsk decreased at a rate of −8.7 ± 2.5% per decade from 1979 to 2010, which is the second largest fraction of ice reduction in the marginal seas of the Northern Hemisphere. The Okhotsk Sea Intermediate Water (OSIW) on the isopycnal surface of 27.0σθ exhibits a remarkable warming trend, with a maximum value of 0.62 ± 0.18 °C over the last 50 years. Salinity of the dense shelf water (DSW) is a key parameter of the OSIW warming; DSW salinity decreases at a rate of −0.12 ± 0.08 over the last 50 years, caused by freshening of the surface salinity in the subarctic North Pacific, as well as reduction in ice production in the Sea of Okhotsk. Besides, interannual-to-decadal scale variations are evident in the MSIE, DSW salinity and OSIW temperature, and their mechanisms are discussed. Further, the sea level along the coast of the Sea of Okhotsk, correlated with the wind-driven coastal current, exhibits coherent interannual variations. Effects of the 18.6-year-period nodal tide cycle, caused by strong tides along the Kuril Islands, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Sect. 3.3, DSW is defined as water colder than −1.5 °C that is located below a depth of 100 m and is detected at each observed profile over the northern shelves in the Sea of Okhotsk (Uehara et al. 2012, 2014). Density range is typically 26.8–26.9σθ with this definition.

References

  • Andreev AG, Kusakabe M (2001) Interdecadal variability in dissolved oxygen in the intermediate water layer of the Western Subarctic Gyre and Kuril Basin (Okhotsk Sea). J Geophys Res 28:2453–2456

    Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of lowfrequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Bindoff NL, McDougall TJ (1994) Diagnosing Climate Change and ocean ventilation using hydrographic data. J Phys Oceanogr 24:1137–1152

    Article  Google Scholar 

  • Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30:2183. https://doi.org/10.1029/2003gl018597

  • Csanady GT (1978) The arrested topography wave. J Phys Oceanogr 8:47–62

    Article  Google Scholar 

  • Cavalieri DJ, Parkinson CL (1987) On the relationship between atmospheric circulation and fluctuations in the sea ice extents of the Bering and Okhotsk seas. J Geophys Res 92:7141–7162

    Article  Google Scholar 

  • Cavalieri DJ, Parkinson CL (2012) Arctic sea ice variability and trends, 1979–2010. The Cryosphere 6:g 881–889. https://doi.org/10.5194/tc-6-881-2012

  • Durack PJ, Wijffels SE (2010) Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J Clim 23:4342–4362. https://doi.org/10.1175/2010JCLI3377.1

    Article  Google Scholar 

  • Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458. https://doi.org/10.1126/science.1212222

    Article  Google Scholar 

  • Ebuchi N (2006) Seasonal and interannual variations in the East Sakhalin Current revealed by TOPEX/POSEIDON altimeter data. J Oceanogr 62:171–183

    Article  Google Scholar 

  • Gan B, Wu L, Jia F, Li S, Cai W, Nakamura H, Alexander MA, Miller AJ (2017) On the response of the Aleutian Low to greenhouse warming. J. Clim 30:3907–3925. https://doi.org/10.1175/JCLI-D-15-0789.1

    Article  Google Scholar 

  • Gladyshev S, Martin S, Riser S, Figurkin A (2000) Dense water production on the northern Okhotsk shelves: comparison of shipbased spring-summer observations for 1996 and 1997 with satellite observations. J Geophys Res 105:26,281–26,299. https://doi.org/10.1029/1999JC000067

    Article  Google Scholar 

  • Hill KL, Weaver AJ, Freeland HJ, Bychkov A (2003) Evidence of change in the Sea of Okhotsk: implications for the North Pacific. Atmos Ocean 41:49–63

    Article  Google Scholar 

  • Honda M, Yamazaki K, Nakamura H, Takeuchi K (1999) Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J Clim 12:3347–3358

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829

    Article  Google Scholar 

  • Hosoda S, Suga T, Shikama N, Mizuno K (2009) Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J Oceanogr 65:579–586. https://doi.org/10.1007/s10872-009-0049-1

    Article  Google Scholar 

  • Inoue J, Ono J, Tachibana Y, Honda M, Iwamoto K, Fujiyoshi Y, Takeuchi K (2003) Characteristics of heat transfer over the ice-covered Sea of Okhotsk during cold air outbreaks. J Meteorol Soc Jpn 81:1057–1067

    Article  Google Scholar 

  • Isoda Y, Kuroda H, Myousyo T, Honda S (2003) Hydrographic feature of coastal Oyashio and its seasonal variation. Bull Coast Oceanogr 41:5–12 (in Japanese with English abstract)

    Google Scholar 

  • Isoguchi O, Kawamura H, Kono T (1997) A study on wind-driven circulation in the subarctic North Pacific using TOPEX/POSEIDON altimeter data. J Geophys Res 102:12,457–12,468

    Article  Google Scholar 

  • Isoguchi O, Kawamura H (2006) Seasonal to interannual variations of the western boundary current of the subarctic North Pacific by a combination of the altimeter and tide gauge sea levels. J Geophys Res 111:C04013. https://doi.org/10.1029/2005JC003080

    Article  Google Scholar 

  • Itaki T, Ikehara K (2004) Middle to late Holocene changes of the Okhotsk Sea Intermediate Water and their relation to atmospheric circulation. Geophys Res Lett 31:L24309. https://doi.org/10.1029/2004GL021384

    Article  Google Scholar 

  • Ito T, Minobe S, Long MC, Deutsch C (2017) Upper ocean O2 trends: 1958–2015. Geophys Res Lett 44:4214–4223. https://doi.org/10.1002/2017GL073613

    Article  Google Scholar 

  • Ito S, Uehara K, Miyao T, Miyake H, Yasuda I, Watanabe T, Shimizu Y (2004) Characteristics of SSH anomaly based on TOPEX/POSEIDON altimeter and in situ measured velocity and transport of Oyashio on OICE. J Oceanogr 60:425–437

    Article  Google Scholar 

  • Itoh M, Ohshima KI (2000) Seasonal variations of water masses and sea level in the southwestern part of the Okhotsk Sea. J Oceanogr 56:643–654

    Article  Google Scholar 

  • Itoh M, Ohshima K, Wakatsuchi M (2003) Distribution and formation of Okhotsk Sea intermediate water: an analysis of isopycnal climatological data. J Geophys Res 108:3258. https://doi.org/10.1029/2002JC001950

    Article  Google Scholar 

  • Kashiwase H, Ohshima KI, Nihashi S (2014) Long-term variation in sea ice production and its relation to the intermediate water in the Okhotsk Sea. Prog Oceanogr 126:22–32

    Article  Google Scholar 

  • Kawasaki T, Hasumi H (2010) Role of localized mixing around the Kuril Straits in the Pacific thermohaline circulation. J Geophys Res 115:C11002. https://doi.org/10.1029/2010JC006130

    Article  Google Scholar 

  • Kimura N, Wakatsuchi M (1999) Processes controlling the advance and retreat of sea ice in the Sea of Okhotsk. J Geophys Res 104:11,137–11,150

    Article  Google Scholar 

  • Kusaka A, Ono T, Azumaya T, Kasai H, Oguma S, Kawasaki Y, Hirakawa K (2009) Seasonal variations of oceanographic conditions in the continental shelf area off the eastern Pacific coast of Hokkaido, Japan. Oceanogr Jpn 18: 135–156 (in Japanese with English abstract)

    Google Scholar 

  • Martin S, Drucker R, Yamashita K (1998) The production of ice and dense shelf water in the Okhotsk Sea polynyas. J Geophys Res 103:27,771–27,782

    Article  Google Scholar 

  • Matsuda J, Mitsudera H, Nakamura T, Uchimoto K, Nakanowatari T, Ebuchi N (2009) Wind and buoyancy driven intermediate-layer overturning in the Sea of Okhotsk. Deep-Sea Research I 56:1401–1418

    Article  Google Scholar 

  • Matsuda J, Mitsudera H, Nakamura T, Sasajima Y, Hasumi H, Wakatsuchi M (2015) Overturning circulation that ventilates the intermediate layer of the Sea of Okhotsk and the North Pacific: the role of salinity advection. J Geophys Res Oceans 120. http://dx.doi.org/10.1002/2014JC009995

  • Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climatic regime shifts. Geophys Res Lett 26:855–858

    Article  Google Scholar 

  • Mizuta G, Fukamachi Y, Ohshima KI, Wakatsuchi M (2003) Structure and seasonal variability of the East Sakhalin Current. J Phys Oceanogr 33:2430–2445

    Article  Google Scholar 

  • Nakamura T, Awaji T (2004) Tidally induced diapycnal mixing in the Kuril Straits and its role in water transformation and transport: a three-dimensional nonhydrostatic model experiment. J Geophys Res 109:C09S07. http://dx.doi.org/10.1029/2003JC001850

  • Nakamura T, Toyoda T, Ishikawa Y, Awaji T (2006a) Enhanced ventilation in the Okhotsk Sea through tidal mixing at the Kuril Straits. Deep-Sea Res I 53:425–448

    Article  Google Scholar 

  • Nakamura T, Toyoda T, Ishikawa Y, Awaji T (2006b) Effects of tidal mixing at the Kuril Straits on North Pacific ventilation: adjustment of the intermediate layer revealed from numerical experiments. J Geophys Res 111:C04003. https://doi.org/10.1029/2005JC003142

    Article  Google Scholar 

  • Nakanowatari T, Ohshima KI, Wakatsuchi M (2007) Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk. 1955–2004. Geophys Res Lett 34:L04602. http://dx.doi.org/10.1029/2006GL028243

  • Nakanowatari T, Ohshima KI, Nagai S (2010) What determines the maximum sea ice extent in the Sea of Okhotsk? Importance of ocean thermal condition from the Pacific. J Geophys Res 115:C12031. https://doi.org/10.1029/2009jc006070

  • Nakanowatari T, Ohshima KI (2014) Coherent sea level variability in and around the Sea of Okhotsk. Prog Oceanogr 126:58–70

    Article  Google Scholar 

  • Nakanowatari T, Nakamura T, Uchimoto K, Uehara H, Mitsudera H, Ohshima KI, Hasumi H, Wakatsuchi M (2015a) Causes of the multidecadal-scale warming of the intermediate water in the Okhotsk Sea and Western Subarctic North Pacific. J Clim 28:714–736

    Article  Google Scholar 

  • Nakanowatari T, Mitsudera H, Motoi T, Ishikawa I, Ohshima KI, Wakatsuchi M (2015b) Multidecadal-scale freshening at the salinity minimum in the Western part of North Pacific: importance of wind-driven cross-gyre transport of subarctic water to the subtropical gyre. J Phys Oceanogr 45:988–1008. https://doi.org/10.1175/JPO-D-13-0274.1

    Article  Google Scholar 

  • Nakanowatari T, Nakamura T, Uchimoto K, Nishioka J, Mitsudera H, Wakatsuchi M (2017) Importance of Ekman transport and gyre circulation change on seasonal variation of surface dissolved iron in the western subarctic North Pacific. J Geophys Res 122:4364–4391. https://doi.org/10.1002/2016JC012354

    Article  Google Scholar 

  • Nihashi S, Ohshima KI, Tamura T, Fukamachi Y, Saitoh S (2009) Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E. J Geophys Res 114:C10025. https://doi.org/10.1029/2008JC005222

    Article  Google Scholar 

  • Nishioka J, Ono T, Saito H, Nakatsuka T, Takeda S, Yoshimura T, Suzuki K, Kuma K, Nakabayashi S, Tsumune D, Mitsudera H, Johnson WK, Tsuda A (2007) Iron supply to the western subarctic Pacific: importance of iron export from the Sea of Okhotsk. J Geophys Res 112:C10012. https://doi.org/10.1029/2006JC004055

    Article  Google Scholar 

  • Nishioka J, Ono T, Saito H, Sakaoka K, Yoshimura T (2011) Oceanic iron supply mechanisms which support the spring diatom bloom in the Oyashio region, western subarctic Pacific. J Geophys Res 112:C10012. https://doi.org/10.1029/2010JC006321

    Article  Google Scholar 

  • Nishioka J, Nakatsuka T, Watanabe YW, Yasuda I, Kuma K, Ogawa H, Ebuchi N, Scherbinin A, Volkov YN, Shiraiwa T, Wakatsuchi M (2013) Intensive mixing along an island chain controls oceanic biogeochemical cycles. Glob Biogeochem Cycles 27. http://dx.doi.org/10.1002/gbc.20088

  • Nishioka J, Nakatsuka T, Ono K, Volkov YN, Scherbinin A, Shiraiwa T (2014) Quantitative evaluation of Fe transport processes in the Sea of Okhotsk. Prog Oceanogr 126:1–7

    Article  Google Scholar 

  • Nishioka J, Obata H (2017) Dissolved iron distribution in the western and central subarctic Pacific: HNLC water formation and biogeochemical processes. Limnol Oceanogr 62:2004–2022

    Article  Google Scholar 

  • Ogata T, Ueda H, Inoue T, Hayasaki M, Yoshida A, Watanabe S, Kira M, Ooshiro M, Kumai A (2014) Projected future changes in the Asian monsoon: a comparison of CMIP3 and CMIP5 model results. J Meteorol Soc Jpn Ser II 92:207–225

    Article  Google Scholar 

  • Ogi M, Tachibana Y (2006) Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge. Geophys Res Lett 33:L08709. https://doi.org/10.1029/2006GL025838

    Article  Google Scholar 

  • Ohshima KI, Wakatsuchi M, Fukamachi Y, Mizuta G (2002) Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J Geophys Res 107:3195. https://doi.org/10.1029/2001JC001005

    Article  Google Scholar 

  • Ohshima KI, Watanabe T, Nihashi S (2003) Surface heat budget of the Sea of Okhotsk during 1987–2001 and the role of sea ice on it. J Meteorol Soc Jpn 81:653–677. https://doi.org/10.2151/jmsj.81.653

    Article  Google Scholar 

  • Ohshima KI, Simizu D, Itoh M, Mizuta G, Fukamachi Y, Riser SC, Wakatsuchi M (2004) Sverdrup balance and the cyclonic gyre in the Sea of Okhotsk. J Phys Oceanogr 34:513–525

    Article  Google Scholar 

  • Ohshima KI, Nihashi S, Hashiya E, Watanabe T (2006) Interannual variability of sea ice area in the Sea of Okhotsk: importance of surface heat flux in fall. J Meteorol Soc Jpn 84:907–919

    Article  Google Scholar 

  • Ohshima KI, Nakanowatari T, Riser S, Wakatsuchi M (2010) Seasonal variation in the in- and outflow of the Okhotsk Sea with the North Pacific. Deep Sea Res II 57:1247–1256. https://doi.org/10.1016/J.DSR2.2009.12.012

    Article  Google Scholar 

  • Ohshima KI, Nakanowatari T, Riser S, Volkov YN, Wakatsuchi M (2014) Freshening and dense shelf water reduction in the Okhotsk Sea linked with sea ice decline. Prog Oceanogr 126:71–79

    Article  Google Scholar 

  • Ono T, Midorikawa T, Watanabe YW, Tadokoro K, Saino T (2001) Temporal increases of phosphate and apparent oxygen utilization in the surface waters of western subarctic Pacific from 1968 to 1998. Geophys Res Lett 28:3285–3288

    Article  Google Scholar 

  • Osafune S, Yasuda I (2006) Bidecadal variability in the intermediate waters of the northwestern subarctic Pacific and the Okhotsk Sea in relation to 18.6 year period nodal tidal cycle. J Geophys Res 111:C05007. http://dx.doi.org/10.1029/2005JC003277

  • Osafune S, Yasuda I (2012) Numerical study on the impact of the 18.6-year period nodal tidal cycle on water masses in the subarctic North Pacific. J Geophys Res 117:C05009. http://dx.doi.org/10.1029/2011JC007734

  • Osafune S, Yasuda I (2013) Remote impacts of the 18.6 year period modulation of localized tidal mixing in the North Pacific. J Geophys Res Oceans 118:3128–3137. https://doi.org/10.1002/jgrc.20230

    Article  Google Scholar 

  • Parkinson CL (1990) The impact of the Siberian high and Aleutian low on the sea-ice cover of the Sea of Okhotsk. Ann Glaciol 14:226–229

    Article  Google Scholar 

  • Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. Bull Am Meteorol Soc 78:2837–2848

    Article  Google Scholar 

  • Ray RD (2006) Decadal climate variability: is there a tidal connection? J Clim 20:3542–3560

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily High-resolution-blended analyses for sea surface temperature. J Climate 20(22):5473–5496

    Google Scholar 

  • Rodionov SN, Bond NA, Overland JE (2007) The Aleutian Low, storm tracks, and winter climate variability in the Bering Sea. Deep-Sea Res. Part II 54:2560–2577

    Article  Google Scholar 

  • Sakamoto K, Tsujino H, Nishikawa S, Nakano H, Motoi T (2010) Dynamics of the coastal Oyashio and its seasonal variation in a high-resolution Western North Pacific Ocean model. J Phys Oceanogr 40:1283–1301

    Article  Google Scholar 

  • Sasaki YN, Katagiri Y, Minobe S, Rigor IG (2007) Autumn atmospheric preconditioning for interannual variability of wintertime sea-ice in the Okhotsk Sea. J Oceanogr 63:255–265

    Article  Google Scholar 

  • Screen JA (2017) Simulated atmospheric response to regional and Pan-Arctic Sea ice loss. J Clim 30:3945–3962. https://doi.org/10.1175/JCLI-D-16-0197.1

    Article  Google Scholar 

  • Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change 77:85–96. https://doi.org/10.1016/j.gloplacha.2011.03.004

    Article  Google Scholar 

  • Shcherbina AY, Talley LD, Rudnick DL (2003) Direct observations of North Pacific ventilation: Brine rejection in the Okhotsk Sea. Science 302:1952–1955

    Article  Google Scholar 

  • Shcherbina AY, Talley LD, Rudnick DL (2004a) Dense water formation on the northwestern shelf of the Okhotsk Sea: 1. Direct observations of brine rejection. J Geophys Res 109:C09S08. https://doi.org/10.1029/2003JC002196

  • Shcherbina AY, Talley LD, Rudnick DL (2004b) Dense water formation on the northwestern shelf of the Okhotsk Sea: 2. Quantifying the transports. J Geophys Res 109:C09S09. https://doi.org/10.1029/2003JC002197

  • Simizu D, Ohshima KI (2002) Barotropic response of the Sea of Okhotsk to wind forcing. J Oceanogr 58:851–860

    Article  Google Scholar 

  • Stabeno PJ, Reed RK, Overland JE (1994) Lagrangian measurements in the Kamchatka Current and Oyashio. J Oceanogr 50:653–662

    Article  Google Scholar 

  • St. Laurent LC, Simmons HL, Jayne SR (2002) Estimating tidally driven mixing in the deep ocean. Geophys Res Lett 29:2106. https://doi.org/10.1029/2002GL015633

  • Tachibana Y, Honda M, Takeuchi K (1996) The abrupt decrease of the sea ice over the southern part of the Sea of Okhotsk in 1989 and its relation to the recent weakening of the Aleutian low. J Meteorol Soc Jpn 74:579–584

    Article  Google Scholar 

  • Tadokoro K, Ono T, Yasuda I, Osafune S, Shiomoto A, Sugisaki H (2009) Possible mechanisms of decadal-scale variation in PO4 concentration in the western North Pacific. Geophys Res Lett 36:L08606. https://doi.org/10.1029/2009GL037327

    Article  Google Scholar 

  • Talley LD, Nagata Y (1995) The Okhotsk Sea and Oyashio region. PICES Scientific Report No. 2, Sidney, B.C., Canada, 227 pp

    Google Scholar 

  • Tanaka Y, Yasuda I, Hasumi H, Tatebe H, Osafune S (2012) Effects of the 18.6-yr modulation of tidal mixing on the North Pacific Bidecadal climate variability in a coupled climate model. J Clim 25:7625–7642

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Uchimoto K, Mitsudera H, Ebuchi N, Mizuta G (2008) Seasonal variations of the sea level in the eastern part of the Kuril Basin. Umi to Sora 84:93–99 (in Japanese with English abstract and figure captions)

    Google Scholar 

  • Uchimoto K, Nakamura T, Nishioka J, Mitsudera H, Misumi K, Tsumune D, Wakatsuchi M (2014) Simulation of high concentration of iron in dense shelf water in the Okhotsk Sea. Prog Oceanogr 126:194–210

    Google Scholar 

  • Uehara H, Kruts AA, Volkov YN, Nakamura T, Ono T, Mitsudera H (2012) A New climatology of the Okhotsk Sea derived from the FERHRI database. J Oceanogr 68:869–886

    Article  Google Scholar 

  • Uehara H, Kruts AA, Mitsudera H, Nakamura T, Volkov YN, Wakatsuchi M (2014) Remotely propagating salinity anomaly varies the source of the North Pacific ventilation. Prog Oceanogr 126:80–97

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Vande Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vigan M, Ohshima KI, Nakanowatari T, Riser S (2019) Seasonal changes of water mass, circulation and dynamic response in the Kuril Basin of the Sea of Okhotsk. Deep Sea Res Part I 144:115–131

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Google Scholar 

  • Yagi M, Yasuda I, Tanaka T, Tanaka Y, Ono K, Ohshima KI, Katsumata K (2014) Re-evaluation of turbulent mixing vertical structure in the Bussol’ Strait and its impact on water masses in the Okhotsk Sea and the North Pacific. Prog Oceanogr 126:121–134. https://doi.org/10.1016/j.pocean.2014.04.023

    Article  Google Scholar 

  • Yamazaki K (2000) Interaction between the wintertime atmospheric circulation and the variation in the sea ice extent of the Sea of Okhotsk (in Japanese with English abstract). Seppyo 62:345–354

    Google Scholar 

  • Yamamoto-Kawai M, Watanabe S, Tsunogai S, Wakatsuchi M (2004) Chlorofluorocarbons in the Sea of Okhotsk: ventilation of the intermediate water. Geophys Res 109. https://doi.org/10.1029/2003JC001919

  • Yasuda I (1997) The origin of the North Pacific intermediate water. J Geophys Res 102:893–910. https://doi.org/10.1029/96JC02938

    Article  Google Scholar 

  • Yasunaka S, Nojiri Y, Nakaoka S, Ono T, Whitney FA, Telszewski M (2014) Mapping of sea surface nutrients in the North Pacific: basin-wide distribution and seasonal to interannual variability. J Geophys Res Oceans 119:7756–7771. https://doi.org/10.1002/2014JC010318

    Article  Google Scholar 

  • You Y, Suginohara N, Fukasawa M, Yasuda I, Kaneko I, Yoritaka H, Kawamiya M (2000) Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific intermediate water. J Geophys Res Oceans 105:3253–3280. https://doi.org/10.1029/1999JC900304

    Article  Google Scholar 

  • Watanabe YW, Wakita M, Maeda N, Ono T, Gamo T (2003) Synchronous bidecadal periodic changes of oxygen, phosphate and temperature between the Japan Sea deep water and the North Pacific intermediate water. Geophys Res Lett 30:2273. https://doi.org/10.1029/2003GL018338

    Article  Google Scholar 

  • Yasuda I, Osafune S, Tatebe H (2006) Possible explanation linking 18.6-year period nodal tidal cycle with bi-decadal variations of ocean and climate in the North Pacific. Geophys Res Lett 33:L08606. https://doi.org/10.1029/2005GL025237

  • Yasunaka S, Ono T, Nojiri Y, Whitney FA, Wada C, Murata A, Nakaoka S, Hosoda S (2016) Long‐term variability of surface nutrient concentrations in the North Pacific. Geophys Res Lett 43(7):3389–3397

    Google Scholar 

Download references

Acknowledgements

AMSR-E data was supplied by Japan Aerospace Exploration Agency through the Arctic Data archive System (ADS), under the cooperation between National Institute of Polar Research and JAXA. We would thank Dr. Sasaki for providing us with data to redraw some figures. We would also thank Dr. Nishikawa for drawing figures. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, Grants-in-Aid for Scientific Research (17H01156 and JP18H04909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humio Mitsudera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakanowatari, T., Mitsudera, H. (2020). Long-Term Trend and Interannual to Decadal Variability in the Sea of Okhotsk. In: Chen, CT., Guo, X. (eds) Changing Asia-Pacific Marginal Seas. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-15-4886-4_3

Download citation

Publish with us

Policies and ethics