Skip to main content

Multidecadal Variations of Sea Surface CO2 Fugacity (fCO2) in the Oyashio Current-Influenced Ocean Margin

  • Chapter
  • First Online:
Book cover Changing Asia-Pacific Marginal Seas

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

Abstract

Oyashio Current-influenced northwestern North Pacific Ocean margin (the Oyashio Region, east of Japan) represents an important area for intermediate water mass formation, hence the transport of anthropogenic CO2 into the interior North Pacific. Currently, it is unclear how the air-sea CO2 fugacity gradient in the climatically sensitive Oyashio Region has been behaving in recent decades. Taking advantage of a community-based Surface Ocean CO2 Atlas (SOCAT, Version 5), we examined the sea surface fCO2 trends in 0.5° × 0.5° grids in the east Japanese margin (32.0°N–43.5°N, 140.0°E–147.0°E). In the Oyashio Region, seawater fCO2 increased significantly at a rate of 2.86 ± 0.92 µatm yr−1, greater than the atmospheric fCO2 increase rate (1.95 ± 0.03 µatm yr−1). Because of lower oceanic fCO2 values in this region compared with the atmosphere, the faster seawater fCO2 increase suggests that the Oyashio Region probably represents a decreasing CO2 sink in the past decades. Furthermore, the trend of the non-temperature controlled fCO2 change (3.22 ± 1.11 µatm yr−1) suggests that processes such as (1) enhanced respiration based on the increasing export of organic carbon from the neighboring Okhotsk Sea, and (2) reduced primary production in the Oyashio Region itself due to increased water column stratification, may have contributed to the faster surface fCO2 increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakker DCE, Pfeil B, Landa C, Metzl N, O’Brien KM, Olsen A, Smith K, Cosca C, Harasawa S, Jones SD, Nakaoka S, Nojiri Y, Schuster U, Steinhoff T, Tilbrook B, Wanninkhof R, Alin SR, Barbero L, Bates NR, Bianchi AA, Bonou F, Boutin J, Bozec Y, Burger E, Cai W-J, Castle RD, Chen L, Chierici M, Currie K, Evans W, Featherstone C, Feely RA, Fransson A, Greenwood N, Gregor L, Hankin S, Hardman-Mountford NJ, Harlay J, Hauck J, Hoppema M, Humphreys M, Hunt CW, Ibánhez JSP, Johannessen T, Keeling R, Kitidis V, Körtzinger A, Kozyr A, Krasakopolou E, Kuwata A, Landschϋtzer P, Lauvset SK, Lefèvre N, Lo Monaco C, Manke AB, Mathis JT, Merlivat L, Monteiro P, Munro D, Murata A, Newberger T, Omar AM, Ono T, Paterson K, Pierrot D, Robbins LL, Sabine CL, Saito S, Salisbury J, Schneider B, Schlitzer R, Schweitzer R, Sieger R, Skjelvan I, Sullivan KF, Sutherland SC, Sutton AJ, Sweeney C, Tadokoro K, Takahashi T, Telszewski M, Tuma M, Vandemark D, Van Heuven SMAC, Wada C, Ward B, Watson AJ, Xu S (2016) A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst Sci Data 8:383–413. https://doi.org/10.5194/essd-6-69-2014

    Article  Google Scholar 

  • Brown ZW, Arrigo KR (2012) Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. ICES J Mar Sci 69(7):1180–1193. https://doi.org/10.1093/icesjms/fss113

    Article  Google Scholar 

  • Chiba S, Ono T, Tadokoro K, Midorikawa T, Saino T (2004) Increased stratification and decreased lower trophic level productivity in the Oyashio Region of the North Pacific: a 30-year retrospective study. J Oceanogr 60(1):149–162. https://doi.org/10.1023/B:JOCE.0000038324.14054.cf

    Article  Google Scholar 

  • Ducklow HW, Steinberg DK, Buesseler KO (2015) Upper ocean carbon export and the biological pump. Oceanography 14(4):50–58

    Article  Google Scholar 

  • Fassbender AJ, Sabine CL, Cronin MF, Sutton AJ (2017) Mixed-layer carbon cycling at the Kuroshio Extension Observatory. Glob Biogeochem Cycles 31(2):272–288. https://doi.org/10.1002/2016GB005547

    Article  Google Scholar 

  • Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21. https://doi.org/10.1080/00401706.1969.10490657

    Article  Google Scholar 

  • Hill KL, Weaver AJ, Freeland HJ, Bychkov A (2003) Evidence of change in the sea of okhotsk: Implications for the North Pacific. Atmos-Ocean 41(1):49–63. https://doi.org/10.3137/ao.410104

    Article  Google Scholar 

  • Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76(3):217–285. https://doi.org/10.1016/j.pocean.2007.11.003

    Article  Google Scholar 

  • Huthnance JM, Aken HMV, White M, Barton ED, Cann BL, Coelho EF, Fanjul EA, Miller P, Vitorino J (2002) Ocean margin exchange—water flux estimates. J Mar Sys 32:107–137

    Article  Google Scholar 

  • Ishii M, Kosugi N, Sasano D, Saito S, Midorikawa T, Inoue HY (2011) Ocean acidification off the south coast of Japan: a result from time series observations of CO2 parameters from 1994 to 2008. J Geophys Res 116(C6):C06022. https://doi.org/10.1029/2010jc006831

    Article  Google Scholar 

  • Itoh S, Yasuda I (2010) Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension Region detected from the distribution of the sea surface height anomaly. J Phys Oceanogr 40(5):1018–1034. https://doi.org/10.1175/2009jpo4265.1

    Article  Google Scholar 

  • Kanna N, Toyota T, Nishioka J (2014) Iron and macro-nutrient concentrations in sea ice and their impact on the nutritional status of surface waters in the southern Okhotsk Sea. Prog Oceanogr 126:44–57. https://doi.org/10.1016/j.pocean.2014.04.012

    Article  Google Scholar 

  • Kim I-N, Lee K, Gruber N, Karl DM, Bullister JL, Yang S, Kim T-W (2014) Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346(6213):1102–1106. https://doi.org/10.1126/science.1258396

    Article  Google Scholar 

  • Kim T-W, Lee K, Najjar RG, Jeong H-D, Jeong HJ (2011) Increasing N abundance in the Northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science 334(6055):505–509. https://doi.org/10.1126/science.1206583

    Article  Google Scholar 

  • Kono T (1997) Modification of the Oyashio Water in the Hokkaido and Tohoku areas. Deep-Sea Res Part I 44(4):669–688. https://doi.org/10.1016/S0967-0637(96)00108-2

    Article  Google Scholar 

  • Kusakabe M, Andreev A, Lobanov V, Zhabin I, Kumamoto Y, Murata A (2002) Effects of the anticyclonic eddies on water masses, chemical parameters and chlorophyll distributions in the Oyashio Current Region. J Oceanogr 58(5):691–701. https://doi.org/10.1023/a:1022846407495

    Article  Google Scholar 

  • Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE, van Heuven S, Hoppema M, Metzl N, Sweeney C, Takahashi T, Tilbrook B, Wanninkhof R (2015) The reinvigoration of the Southern Ocean carbon sink. Science 349(6253):1221–1224. https://doi.org/10.1126/science.aab2620

    Article  Google Scholar 

  • Laruelle GG, Cai W-J, Hu X, Gruber N, Mackenzie FT, Regnier P (2018) Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat Commun 9(1):454. https://doi.org/10.1038/s41467-017-02738-z

    Article  Google Scholar 

  • Lenton A, Metzl N, Takahashi T, Kuchinke M, Matear RJ, Roy T, Sutherland SC, Sweeney C, Tilbrook B (2012) The observed evolution of oceanic pCO2 and its drivers over the last two decades. Glob Biogeochem Cycles 26(2):GB2021. https://doi.org/10.1029/2011gb004095

  • Liu K-K, Atkinson L, Quiñones R, Talaue-McManus L (2010) Biogeochemistry of continental margins in a global context. In: Liu K-K, Atkinson L, Quiñones R, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins: a global synthesis. Springer, p 500

    Google Scholar 

  • Longhurst AR, Glen Harrison W (1989) The biological pump: profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22(1):47–123. https://doi.org/10.1016/0079-6611(89)90010-4

    Article  Google Scholar 

  • Masujima M, Yasuda I, Hiroe Y, Watanabe T (2003) Transport of Oyashio Water across the subarctic front into the mixed water region and formation of NPIW. J Oceanogr 59(6):855–869. https://doi.org/10.1023/B:JOCE.0000009576.09079.f5

    Article  Google Scholar 

  • Matano RP, Palma ED (2008) On the upwelling of downwelling currents. J Phys Oceanogr 38(11):2482–2500. https://doi.org/10.1175/2008jpo3783.1

    Article  Google Scholar 

  • McKinley GA, Fay AR, Lovenduski NS, Pilcher DJ (2017) Natural variability and anthropogenic trends in the ocean carbon sink. Annu Rev Mar Sci 9(1):125–150. https://doi.org/10.1146/annurev-marine-010816-060529

    Article  Google Scholar 

  • McKinley GA, Fay AR, Takahashi T, Metzl N (2011) Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nat Geosci 4(9):606–610. https://doi.org/10.1038/ngeo1193

    Article  Google Scholar 

  • Midorikawa T, Iwano S, Saito K, Takano H, Kamiya H, Ishii M, Inoue HY (2003) Seasonal changes in oceanic pCO2 in the Oyashio region from winter to spring. J Oceanogr 59(6):871–882

    Article  Google Scholar 

  • Nakatsuka T, Toda M, Kawamura K, Wakatsuchi M (2004) Dissolved and particulate organic carbon in the Sea of Okhotsk: transport from continental shelf to ocean interior. J Geophys Res-Oceans 109(C9). https://doi.org/10.1029/2003jc001909

  • Nosaka Y, Yamashita Y, Suzuki K (2017) Dynamics and origin of transparent exopolymer particles in the Oyashio region of the western subarctic Pacific during the spring diatom bloom. Front Mar Sci 4(79). https://doi.org/10.3389/fmars.2017.00079

  • Ohshima KI, Nakanowatari T, Riser S, Volkov Y, Wakatsuchi M (2014) Freshening and dense shelf water reduction in the Okhotsk Sea linked with sea ice decline. Prog Oceanogr 126:71–79. https://doi.org/10.1016/j.pocean.2014.04.020

    Article  Google Scholar 

  • Ono T, Sasaki K, Yasuda I (2003) Re-Estimation of annual anthropogenic carbon input from Oyashio into North Pacific Intermediate Water. J Oceanogr 59(6):883–891. https://doi.org/10.1023/B:JOCE.0000009578.19174.d4

    Article  Google Scholar 

  • Ono T, Watanabe YW, Sasaki K (2000) Annual anthropogenic carbon transport into the North Pacific intermediate water through the Kuroshio/Oyashio Interfrontal Zone: an estimation from CFCs distribution. J Oceanogr 56(6):675–689. https://doi.org/10.1023/a:1011177717139

    Article  Google Scholar 

  • Pfeil B, Olsen A, Bakker DCE, Hankin S, Koyuk H, Kozyr A, Malczyk J, Manke A, Metzl N, Sabine CL, Akl J, Alin SR, Bates N, Bellerby RGJ, Borges A, Boutin J, Brown PJ, Cai WJ, Chavez FP, Chen A, Cosca C, Fassbender AJ, Feely RA, González-Dávila M, Goyet C, Hales B, Hardman-Mountford N, Heinze C, Hood M, Hoppema M, Hunt CW, Hydes D, Ishii M, Johannessen T, Jones SD, Key RM, Körtzinger A, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lourantou A, Merlivat L, Midorikawa T, Mintrop L, Miyazaki C, Murata A, Nakadate A, Nakano Y, Nakaoka S, Nojiri Y, Omar AM, Padin XA, Park GH, Paterson K, Perez FF, Pierrot D, Poisson A, Ríos AF, Santana-Casiano JM, Salisbury J, Sarma VVSS, Schlitzer R, Schneider B, Schuster U, Sieger R, Skjelvan I, Steinhoff T, Suzuki T, Takahashi T, Tedesco K, Telszewski M, Thomas H, Tilbrook B, Tjiputra J, Vandemark D, Veness T, Wanninkhof R, Watson AJ, Weiss R, Wong CS, Yoshikawa-Inoue H (2013) A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth Syst Sci Data 5(1):125–143. https://doi.org/10.5194/essd-5-125-2013

    Article  Google Scholar 

  • Qiu B (2001) Kuroshio and Oyashio currents. In: Steele J, Thorpe S, Turekian K (eds) Ocean currents: a derivative of the encyclopedia of ocean sciences. Academic Press, pp 61–72. https://doi.org/10.1038/s41558-018-0263-1

  • Qiu B, Chen S, Schneider N (2017) Dynamical links between the decadal variability of the Oyashio and Kuroshio Extensions. J Climate 30(23):9591–9605. https://doi.org/10.1175/jcli-d-17-0397.1

    Article  Google Scholar 

  • Rogachev K, Tishchenko PY, Pavlova G, Bychkov A, Carmack EC, Wong CS, Yuraso GI (1996) The influence of fresh-core rings on chemical concentrations (CO2, PO4, O2, alkalinity, and pH) in the western subarctic Pacific Ocean. J Geophys Res-Oceans 101(C1):999–1010. https://doi.org/10.1029/95JC02924

    Article  Google Scholar 

  • Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 99–125. https://doi.org/10.1007/978-3-662-06278-4_5

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371

    Article  Google Scholar 

  • Saito H, Tsuda A, Kasai H (2002) Nutrient and plankton dynamics in the Oyashio region of the western subarctic Pacific Ocean. Deep-Sea Res Part II 49(24):5463–5486. https://doi.org/10.1016/S0967-0645(02)00204-7

    Article  Google Scholar 

  • Sakurai Y (2007) An overview of the Oyashio ecosystem. Deep-Sea Res Part II 54(23):2526–2542. https://doi.org/10.1016/j.dsr2.2007.02.007

    Article  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton

    Book  Google Scholar 

  • Sasano D, Takatani Y, Kosugi N, Nakano T, Midorikawa T, Ishii M (2018) Decline and bidecadal oscillations of dissolved oxygen in the Oyashio region and their propagation to the western North Pacific. Glob Biogeochem Cycles 32(6):909–931. https://doi.org/10.1029/2017GB005876

    Article  Google Scholar 

  • Seki O, Yoshikawa C, Nakatsuka T, Kawamura K, Wakatsuchi M (2006) Fluxes, source and transport of organic matter in the western Sea of Okhotsk: stable carbon isotopic ratios of n-alkanes and total organic carbon. Deep-Sea Res Part I 53(2):253–270. https://doi.org/10.1016/j.dsr.2005.11.004

    Article  Google Scholar 

  • Shimizu Y, Yasuda I, Ito S-I (2001) Distribution and circulation of the coastal Oyashio intrusion. J Phys Oceanogr 31(6):1561–1578. https://doi.org/10.1175/1520-0485(2001)031%3c1561:Dacotc%3e2.0.Co;2

    Article  Google Scholar 

  • Sugimoto S, Hanawa K (2011) Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-Oyashio Confluence Region: influences of warm eddies detached from the Kuroshio Extension. J Clim 24(24):6551–6561. https://doi.org/10.1175/2011jcli4023.1

    Article  Google Scholar 

  • Sutton AJ, Feely RA, Maenner-Jones S, Musielwicz S, Osborne J, Dietrich C, Monacci N, Cross J, Bott R, Kozyr A (2018) Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth Syst Sci Data Discuss 2018:1–23. https://doi.org/10.5194/essd-2018-77

    Article  Google Scholar 

  • Tadokoro K, Chiba S, Ono T, Midorikawa T, Saino T (2005) Interannual variation in Neocalanus biomass in the Oyashio waters of the western North Pacific. Fish Oceanogr 14(3):210–222. https://doi.org/10.1111/j.1365-2419.2005.00333.x

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res Part II 49(9–10):1601–1622. https://doi.org/10.1016/s0967-0645(02)00003-6

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Part II 56(8–10):554–577

    Article  Google Scholar 

  • Wang H, Hu X, Cai W-J, Sterba-Boatwright B (2017) Decadal fCO2 trends in global ocean margins and adjacent boundary current-influenced areas. Geophys Res Lett 44(17):8962–8970. https://doi.org/10.1002/2017GL074724

    Article  Google Scholar 

  • Wang H, Hu X, Sterba-Boatwright B (2016) A new statistical approach for interpreting oceanic fCO2 record. Mar Chem 183:41–49

    Article  Google Scholar 

  • Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr-Meth 12(6):351–362. https://doi.org/10.4319/lom.2014.12.351

    Article  Google Scholar 

  • Wanninkhof R, McGillis WR (1999) A cubic relationship between air-sea CO2 exchange and wind speed. Geophys Res Lett 26(13):1889–1892. https://doi.org/10.1029/1999GL900363

    Article  Google Scholar 

  • Wanninkhof R, Park GH, Takahashi T, Sweeney C, Feely R, Nojiri Y, Gruber N, Doney SC, McKinley GA, Lenton A, Le Quéré C, Heinze C, Schwinger J, Graven H, Khatiwala S (2013) Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10(3):1983–2000. https://doi.org/10.5194/bg-10-1983-2013

    Article  Google Scholar 

  • Watanabe YW, Nishioka J, Nakatsuka T (2013) Decadal time evolution of oceanic uptake of anthropogenic carbon in the Okhotsk Sea. Geophys Res Lett 40(2):322–326. https://doi.org/10.1002/grl.50113

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2(3):203–215. https://doi.org/10.1016/0304-4203(74)90015-2

    Article  Google Scholar 

  • Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8(4):347–359

    Article  Google Scholar 

  • Wu L, Cai W, Zhang L, Nakamura H, Timmermann A, Joyce T, McPhaden MJ, Alexander M, Qiu B, Visbeck M, Chang P, Giese B (2012) Enhanced warming over the global subtropical western boundary currents. Nat Clim Change 2:161. https://doi.org/10.1038/nclimate1353

    Article  Google Scholar 

  • Yang H, Lohmann G, Wei W, Dima M, Ionita M, Liu J (2016) Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res-Oceans 121(7):4928–4945. https://doi.org/10.1002/2015JC011513

    Article  Google Scholar 

  • Yasuda I (2003) Hydrographic structure and variability in the Kuroshio-Oyashio transition area. J Oceanogr 59(4):389–402. https://doi.org/10.1023/a:1025580313836

    Article  Google Scholar 

  • Yasuda I, Kouketsu S, Katsumata K, Ohiwa M, Kawasaki Y, Kusaka A (2002) Influence of Okhotsk Sea intermediate water on the Oyashio and North Pacific intermediate water. J Geophys Res-Oceans 107(C12):30-31–30-11. https://doi.org/10.1029/2001jc001037

  • Yatsu A, Chiba S, Yamanaka Y, Ito S, Shimizu Y, Kaeriyama M, Watanabe Y (2013) Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J Mar Sci 70(5):922–933. https://doi.org/10.1093/icesjms/fst084

    Article  Google Scholar 

  • Zappa CJ, McGillis WR, Raymond PA, Edson JB, Hintsa EJ, Zemmelink HJ, Dacey JWH, Ho DT (2007) Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys Res Lett 34(10). https://doi.org/10.1029/2006gl028790

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes, vol 65. Elsevier Oceanography Series. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

The authors were partially supported by an NSF grant (OCE#1654232) during the development of this manuscript. The SOCAT Version 5 Coastal databases used here was downloaded from https://www.socat.info/index.php/2017/06/19/v5-release/. The many researchers and funding agencies responsible for the collection of data and quality control are thanked for their contributions that made the SOCAT available. We also thank Larissa Dias for providing helpful editorial assistance, and Drs. Kitack Lee and Hon-Kit Lui for their helpful comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, H., Hu, X. (2020). Multidecadal Variations of Sea Surface CO2 Fugacity (fCO2) in the Oyashio Current-Influenced Ocean Margin. In: Chen, CT., Guo, X. (eds) Changing Asia-Pacific Marginal Seas. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-15-4886-4_14

Download citation

Publish with us

Policies and ethics