Skip to main content

Application of Nanomaterials in Treatment of Endocrine Diseases

  • Chapter
  • First Online:
  • 1107 Accesses

Abstract

The endocrine system is very essential to maintain body homeostasis. Disturbance of endocrine function leads to well-established diseases; such as diabetes mellitus, thyroid and parathyroid disorders, infertility, and obesity. There is no absolute cure for these diseases; however, current treatment aims to monitor them and prevent their further progression. Scientists are working hardly to find better treatment strategies for endocrine disorders. Nanotechnology holds a great promise in finding solutions to these diseases, and this field is advancing very rapidly because of the targeted type of drug delivery, and hence, it reduced the side effects of the current medications. This chapter highlights the current state of researches concerning the use of nanotechnology in managing three examples of endocrine diseases: thyroid dysfunction, diabetes mellitus, and obesity. For example, nanotechnology has been implemented in finding non-invasive routes of insulin delivery such as oral, nasal, or transdermal routes. Glucose nanosensors have been invented in order to improve the accuracy of detection of serum glucose. It is important to emphasize that this field of research is still in the preclinical stage and more work is needed to provide evidence of its safety. Immune response and toxicity are the main issues that concern researchers when using nanotechnology.

Both authors contributed to the writing of this chapter. Figure was drafted by Dr. Al-Khater and revised by Prof. Al-Suhaimi

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M, Naghavi M, Salama JS, Vos T, Abate KH, Abbafati C, Ahmed MB, Al-Aly Z, Alkerwi A, Al-Raddadi R, Amare AT, Amberbir A, Amegah AK, Amini E, Amrock SM, Anjana RM, Ärnlöv J, Asayesh H, Banerjee A, Barac A, Baye E, Bennett DA, Beyene AS, Biadgilign S, Biryukov S, Bjertness E, Boneya DJ, Campos-Nonato I, Carrero JJ, Cecilio P, Cercy K, Ciobanu LG, Cornaby L, Damtew SA, Dandona L, Dandona R, Dharmaratne SD, Duncan BB, Eshrati B, Esteghamati A, Feigin VL, Fernandes JC, Fürst T, Gebrehiwot TT, Gold A, Gona PN, Goto A, Habtewold TD, Hadush KT, Hafezi-Nejad N, Hay SI, Horino M, Islami F, Kamal R, Kasaeian A, Katikireddi SV, Kengne AP, Kesavachandran CN, Khader YS, Khang YH, Khubchandani J, Kim D, Kim YJ, Kinfu Y, Kosen S, Ku T, Defo BK, Kumar GA, Larson HJ, Leinsalu M, Liang X, Lim SS, Liu P, Lopez AD, Lozano R, Majeed A, Malekzadeh R, Malta DC, Mazidi M, McAlinden C, McGarvey ST, Mengistu DT, Mensah GA, Mensink GBM, Mezgebe HB, Mirrakhimov EM, Mueller UO, Noubiap JJ, Obermeyer CM, Ogbo FA, Owolabi MO, Patton GC, Pourmalek F, Qorbani M, Rafay A, Rai RK, Ranabhat CL, Reinig N, Safiri S, Salomon JA, Sanabria JR, Santos IS, Sartorius B, Sawhney M, Schmidhuber J, Schutte AE, Schmidt MI, Sepanlou SG, Shamsizadeh M, Sheikhbahaei S, Shin MJ, Shiri R, Shiue I, Roba HS, Silva DAS, Silverberg JI, Singh JA, Stranges S, Swaminathan S, Tabarés-Seisdedos R, Tadese F, Tedla BA, Tegegne BS, Terkawi AS, Thakur JS, Tonelli M, Topor-Madry R, Tyrovolas S, Ukwaja KN, Uthman OA, Vaezghasemi M, Vasankari T, Vlassov VV, Vollset SE, Weiderpass E, Werdecker A, Wesana J, Westerman R, Yano Y, Yonemoto N, Yonga G, Zaidi Z, Zenebe ZM, Zipkin B, Murray CJL, Collaborators GO (2017) Health effects of overweight, obesity in 195 countries over 25 years. N Engl J Med 377(1):13–27

    Google Scholar 

  • Al Dawish MA, Robert AA, Braham R, Al Hayek AA, Al Saeed A, Ahmed RA, Al Sabaan FS (2016) Diabetes mellitus in Saudi Arabia: a review of the recent literature. Curr Diabetes Rev 12(4):359–368

    Google Scholar 

  • Al-Nozha MM, Al-Mazrou YY, Al-Maatouq MA, Arafah MR, Khalil MZ, Khan NB, Al-Marzouki K, Abdullah MA, Al-Khadra AH, Al-Harthi SS, Al-Shahid MS, Al-Mobeireek A, Nouh MS (2005) Obesity in Saudi Arabia. Saudi Med J 26(5):824–829

    Google Scholar 

  • Ash GI, Kim D, Choudhury M (2019) Promises of nanotherapeutics in obesity. Trends Endocrinol Metab 30(6):369–383

    CAS  Google Scholar 

  • Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022

    CAS  Google Scholar 

  • Bakhru SH, Furtado S, Morello AP, Mathiowitz E (2013) Oral delivery of proteins by biodegradable nanoparticles. Adv Drug Deliv Rev 65(6):811–821

    CAS  Google Scholar 

  • Ballinger A, Peikin SR (2002) Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol 440(2–3):109–117

    CAS  Google Scholar 

  • Barnett D, Tassopoulos CN, Fraser TR (1969) Breath acetone and blood sugar measurements in diabetes. Clin Sci 37(2):570

    CAS  Google Scholar 

  • Barone PW, Strano MS (2009) Single walled carbon nanotubes as reporters for the optical detection of glucose. J Diabetes Sci Technol 3(2):242–252

    Google Scholar 

  • Bendo L, Casanova M, Figueira AC, Polikarpov I, Zucolotto V (2014) Nanostructured sensors containing immobilized nuclear receptors for thyroid hormone detection. J Biomed Nanotechnol 10(5):744–750

    CAS  Google Scholar 

  • Bi R, Shao W, Wang Q, Zhang N (2009) Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. J Biomed Nanotechnol 5(1):84–92

    CAS  Google Scholar 

  • Blaikie FH, Brown SE, Samuelsson LM, Brand MD, Smith RA, Murphy MP (2006) Targeting dinitrophenol to mitochondria: limitations to the development of a self-limiting mitochondrial protonophore. Biosci Rep 26(3):231–243

    CAS  Google Scholar 

  • Brownlee M, Cerami A (1979) A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science 206(4423):1190–1191

    CAS  Google Scholar 

  • Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18(4):478–489

    CAS  Google Scholar 

  • Cappon G, Vettoretti M, Sparacino G, Facchinetti A (2019) Continuous glucose monitoring sensors for diabetes management: a review of technologies and applications. Diabetes Metab J 43(4):383–397

    Google Scholar 

  • Carino GP, Jacob JS, Mathiowitz E (2000) Nanosphere based oral insulin delivery. J Control Release 65(1–2):261–269

    CAS  Google Scholar 

  • Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16(12):584–593

    CAS  Google Scholar 

  • Cawley J, Meyerhoefer C (2012) The medical care costs of obesity: an instrumental variables approach. J Health Econ 31(1):219–230

    Google Scholar 

  • Chakraborty S, Banerjee D, Ray I, Sen A (2008) Detection of biomarker in breath: a step towards noninvasive diabetes monitoring. Curr Sci 94(2):237–242

    CAS  Google Scholar 

  • Chen X, Zhu H, Huang X, Wang P, Zhang F, Li W, Chen G, Chen B (2017) Novel iodinated gold nanoclusters for precise diagnosis of thyroid cancer. Nanoscale 9(6):2219–2231

    CAS  Google Scholar 

  • Choi WI, Lee JH, Kim JY, Kim JC, Kim YH, Tae G (2012) Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J Control Release 157(2):272–278

    CAS  Google Scholar 

  • Chuang EY, Lin KJ, Su FY, Chen HL, Maiti B, Ho YC, Yen TC, Panda N, Sung HW (2013) Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery. J Control Release 169(3):296–305

    CAS  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    CAS  Google Scholar 

  • Crofford OB, Mallard RE, Winton RE, Rogers NL, Jackson JC, Keller U (1977) Acetone in breath and blood. Trans Am Clin Climatol Assoc 88:128–139

    CAS  Google Scholar 

  • Cui Y, Chen H, Hou L, Zhang B, Liu B, Chen G, Tang D (2012) Nanogold-polyaniline-nanogold microspheres-functionalized molecular tags for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Anal Chim Acta 738:76–84

    CAS  Google Scholar 

  • Di J, Price J, Gu X, Jiang X, Jing Y, Gu Z (2014) Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv Healthc Mater 3(6):811–816

    CAS  Google Scholar 

  • Diabetes Overview—Symptoms, Causes, Treatment (2019). Available at: https://www.diabetes.org/diabetes.

  • DiSanto RM, Subramanian V, Gu Z (2015) Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(4):548–564

    CAS  Google Scholar 

  • Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Asp Med 25(4):365–451

    CAS  Google Scholar 

  • Eid S, HM E-Z, SS E, OA F, ML M (2019) Nano selenium treatment effects on thyroid hormones, immunity and antioxidant status in rabbits. World Rabbit Sci 27:93–100

    Google Scholar 

  • Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M (2019) Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 139:116–138

    CAS  Google Scholar 

  • Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16(10):1576–1581

    Google Scholar 

  • Ferreira DC, Reis LP, Lopes NV (2017) A nanocommunication system for endocrine diseases. Clust Comput 20:689–706

    Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64(9):866–884

    CAS  Google Scholar 

  • Friedman JM (2009) Obesity: causes and control of excess body fat. Nature 459(7245):340–342

    CAS  Google Scholar 

  • Functional Nanomaterials Lab—3SINC 2014 and Solid State Lighting Program Workshop (2019). Available at: https://funl.kaust.edu.sa/Pages/3rd%20Saudi%20International%20Nanotechnology%20Conference%20and%20workshops%20(3SINC%202014).aspx.

  • Gates RJ, Hunt MI, Smith R, Lazarus NR (1972) Return to normal of blood-glucose, plasma-insulin, and weight gain in New Zealand obese mice after implantation of islets of Langerhans. Lancet 2(7777):567–570

    CAS  Google Scholar 

  • Gregg EW, Shaw JE (2017) Global health effects of overweight and obesity. N Engl J Med 377(1):80–81

    Google Scholar 

  • Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, Veiseh O, Cheng H, Langer RS, Anderson DG (2013a) Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 7(5):4194–4201

    CAS  Google Scholar 

  • Gu Z, Dang TT, Ma M, Tang BC, Cheng H, Jiang S, Dong Y, Zhang Y, Anderson DG (2013b) Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7(8):6758–6766

    CAS  Google Scholar 

  • Gu J, Wang J, Nie X, Wang W, Shang J (2015) Potential role for carbon nanoparticles identification and preservation in situ of parathyroid glands during total thyroidectomy and central compartment node dissection. Int J Clin Exp Med 8(6):9640–9648

    CAS  Google Scholar 

  • Higaki M, Kameyama M, Udagawa M, Ueno Y, Yamaguchi Y, Igarashi R, Ishihara T, Mizushima Y (2006) Transdermal delivery of CaCO3-nanoparticles containing insulin. Diabetes Technol Ther 8(3):369–374

    CAS  Google Scholar 

  • Hossen MN, Kajimoto K, Akita H, Hyodo M, Ishitsuka T, Harashima H (2010) Ligand-based targeted delivery of a peptide modified nanocarrier to endothelial cells in adipose tissue. J Control Release 147(2):261–268

    CAS  Google Scholar 

  • Hossen N, Kajimoto K, Akita H, Hyodo M, Harashima H (2013) A comparative study between nanoparticle-targeted therapeutics and bioconjugates as obesity medication. J Control Release 171(2):104–112

    CAS  Google Scholar 

  • Huang Z, Li Z, Chen R, Chen G, Lin D, Xi G, Chen Y, Lin H, Lei J (2011) The application of silver nanoparticle based SERS in diagnosing thyroid tissue. J Phys Conf Ser 27:012014

    Google Scholar 

  • Huhtinen P, Pelkkikangas AM, Jaakohuhta S, Lövgren T, Härmä H (2004) Quantitative, rapid europium(III) nanoparticle-label-based all-in-one dry-reagent immunoassay for thyroid-stimulating hormone. Clin Chem 50(10):1935–1936

    CAS  Google Scholar 

  • Hussain AM, Sarangi SN, Kesarwani JA, Sahu SN (2011) Au-nanocluster emission based glucose sensing. Biosens Bioelectron 29(1):60–65

    CAS  Google Scholar 

  • Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25(6):1402–1407

    CAS  Google Scholar 

  • Jiang C, Cano-Vega MA, Yue F, Kuang L, Narayanan N, Uzunalli G, Merkel MP, Kuang S, Deng M (2017) Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity. Mol Ther 25(7):1718–1729

    CAS  Google Scholar 

  • Kelly T, Yang W, Chen CS, Reynolds K, He J (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes 32(9):1431–1437

    CAS  Google Scholar 

  • Kesharwani P, Gorain B, Low SY, Tan SA, Ling ECS, Lim YK, Chin CM, Lee PY, Lee CM, Ooi CH, Choudhury H, Pandey M (2018) Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 136:52–77

    CAS  Google Scholar 

  • Ko KS, Lee M, Koh JJ, Kim SW (2001) Combined administration of plasmids encoding IL-4 and IL-10 prevents the development of autoimmune diabetes in nonobese diabetic mice. Mol Ther 4(4):313–316

    CAS  Google Scholar 

  • Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10(6):625–632

    CAS  Google Scholar 

  • Kozlovskaya V, Zavgorodnya O, Chen Y, Ellis K, Tse HM, Cui W, Thompson JA, Kharlampieva E (2012) Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv Funct Mater 22(16):3389–3398

    CAS  Google Scholar 

  • Lanza RP, Hayes JL, Chick WL (1996) Encapsulated cell technology. Nat Biotechnol 14(9):1107–1111

    CAS  Google Scholar 

  • Laurent D, Vinet L, Lamprianou S, Daval M, Filhoulaud G, Ktorza A, Wang H, Sewing S, Juretschke HP, Glombik H, Meda P, Boisgard R, Nguyen DL, Stasiuk GJ, Long NJ, Montet X, Hecht P, Kramer W, Rutter GA, Hecksher-Sørensen J (2016) Pancreatic β-cell imaging in humans: fiction or option? Diabetes Obes Metab 18(1):6–15

    CAS  Google Scholar 

  • Lee SH, Lee H, Park JS, Choi H, Han KY, Seo HS, Ahn KY, Han SS, Cho Y, Lee KH, Lee J (2007) A novel approach to ultrasensitive diagnosis using supramolecular protein nanoparticles. FASEB J 21(7):1324–1334

    CAS  Google Scholar 

  • Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910

    CAS  Google Scholar 

  • Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8(1):146–152

    CAS  Google Scholar 

  • Lin J, He C, Zhao Y, Zhang S (2009) One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sensors Actuators B 137(2):768–773

    CAS  Google Scholar 

  • Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, Zhang Q, He Q, Zhang Z (2008) Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 356(1–2):333–344

    CAS  Google Scholar 

  • Liu J, Shen W, Zhao B, Wang Y, Wertz K, Weber P, Zhang P (2009) Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv Drug Deliv Rev 61(14):1343–1352

    CAS  Google Scholar 

  • Lopez RF, Seto JE, Blankschtein D, Langer R (2011) Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials 32(3):933–941

    CAS  Google Scholar 

  • Lu Y, Aimetti AA, Langer R, Gu Z (2016) Bioresponsive materials. Nat Rev Mater 2(1):16075

    Google Scholar 

  • Ma Z, Lim TM, Lim LY (2005) Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 293(1–2):271–280

    CAS  Google Scholar 

  • Malik VS, Willett WC, Hu FB (2013) Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 9(1):13–27

    Google Scholar 

  • Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A 109(40):16288–16293

    CAS  Google Scholar 

  • Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C (1997) Biologically erodable microspheres as potential oral drug delivery systems. Nature 386(6623):410–414

    CAS  Google Scholar 

  • Medarova Z, Moore A (2008) Non-invasive detection of transplanted pancreatic islets. Diabetes Obes Metab 10(Suppl 4):88–97

    Google Scholar 

  • Medarova Z, Moore A (2009) MRI in diabetes: first results. AJR Am J Roentgenol 193(2):295–303

    Google Scholar 

  • Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc 1(1):429–435

    CAS  Google Scholar 

  • Näreoja T, Rosenholm JM, Lamminmäki U, Hänninen PE (2017) Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium(III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing. Anal Bioanal Chem 409(13):3407–3416

    Google Scholar 

  • Nose K, Pissuwan D, Goto M, Katayama Y, Niidome T (2012) Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice. Nanoscale 4(12):3776–3780

    CAS  Google Scholar 

  • Paolino D, Cosco D, Gaspari M, Celano M, Wolfram J, Voce P, Puxeddu E, Filetti S, Celia C, Ferrari M, Russo D, Fresta M (2014) Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials 35(25):7101–7109

    CAS  Google Scholar 

  • Park H, Cho S, Han YH, Janat-Amsbury MM, Boudina S, Bae YH (2015) Combinatorial gene construct and non-viral delivery for anti-obesity in diet-induced obese mice. J Control Release 207:154–162

    CAS  Google Scholar 

  • Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int 2015:365672

    Google Scholar 

  • Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS, Langer R, Farokhzad OC (2013) Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med 5(213):213ra167

    Google Scholar 

  • Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222

    CAS  Google Scholar 

  • Saeideh S, Golshan S (2018) Carbon nanotube biosensor for diabetes disease. Crescent J Med Biol Sci 5(1):1–6

    Google Scholar 

  • Salahvarzi A, Mahani M, Torkzadeh-Mahani M, Alizadeh R (2017) Localized surface plasmon resonance based gold nanobiosensor: determination of thyroid stimulating hormone. Anal Biochem 516:1–5

    CAS  Google Scholar 

  • Saleh AA, El-Magd MA (2018) Beneficial effects of dietary silver nanoparticles and silver nitrate on broiler nutrition. Environ Sci Pollut Res Int 25(27):27031–27038

    CAS  Google Scholar 

  • Sangwai M, Sardar S, Vavia P (2014) Nanoemulsified orlistat-embedded multi-unit pellet system (MUPS) with improved dissolution and pancreatic lipase inhibition. Pharm Dev Technol 19(1):31–41

    CAS  Google Scholar 

  • Santhosh P, Manesh KM, Uthayakumar S, Gopalan AI, Lee KP (2009) Hollow spherical nanostructured polydiphenylamine for direct electrochemistry and glucose biosensor. Biosens Bioelectron 24(7):2008–2014

    CAS  Google Scholar 

  • Sawosz E, Binek M, Grodzik M, Zielińska M, Sysa P, Szmidt M, Niemiec T, Chwalibog A (2007) Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr 61(6):444–451

    CAS  Google Scholar 

  • Sharifi E, Salimi A, Shams E, Noorbakhsh A, Amini MK (2014) Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: fabrication of highly sensitive enzymeless glucose sensor. Biosens Bioelectron 56:313–319

    CAS  Google Scholar 

  • Sharma G, Sharma AR, Nam JS, Doss GP, Lee SS, Chakraborty C (2015) Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 13:74

    Google Scholar 

  • Sibuyi NR, Thovhogi N, Gabuza KB, Meyer MD, Drah M, Onani MO, Skepu A, Madiehe AM, Meyer M (2017) Peptide-functionalized nanoparticles for the selective induction of apoptosis in target cells. Nanomedicine (Lond) 12(14):1631–1645

    CAS  Google Scholar 

  • Sibuyi NRS, Meyer M, Onani MO, Skepu A, Madiehe AM (2018) Vascular targeted nanotherapeutic approach for obesity treatment. Int J Nanomedicine 13:7915–7929

    CAS  Google Scholar 

  • Silva HD, Cerqueira MÂ, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867

    Google Scholar 

  • Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18

    CAS  Google Scholar 

  • Statistics | ADA (2019). Available at: https://www.diabetes.org/resources/statistics.

  • Su A-P, Wei T, Gong Y-P, Gong R-X, Li Z-H, Zhu J-Q (2018) Carbon nanoparticles improve lymph node dissection and parathyroid gland protection during thyroidectomy: a systematic review and meta-analysis. Int J Clin Exp Med 11(2):463–473

    Google Scholar 

  • Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY (2012) pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res 45(4):619–629

    CAS  Google Scholar 

  • Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A 106(46):19268–19273

    CAS  Google Scholar 

  • Thiruvengadam M, Rajakumar G, Chung IM (2018) Nanotechnology: current uses and future applications in the food industry. 3 Biotech 8(1):74

    Google Scholar 

  • Tsai S, Shameli A, Yamanouchi J, Clemente-Casares X, Wang J, Serra P, Yang Y, Medarova Z, Moore A, Santamaria P (2010) Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32(4):568–580

    CAS  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    CAS  Google Scholar 

  • Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14(1):45–57

    CAS  Google Scholar 

  • Wang Y, Wei W, Liu X, Zeng X (2009) Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique. Mater Sci Eng C 29(1):50–54

    Google Scholar 

  • Wang H, Dong P, Di D, Wang C, Liu Y, Jian C, Xuezhong W (2013) Interdigitated microelectrodes biosensor with nanodot arrays for thyroid-stimulating hormone detection. Micro & Nano Letters 8(1):11–14

    CAS  Google Scholar 

  • Wen Z, Ci S, Li J (2009) Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem C 113(31):13482–13487

    CAS  Google Scholar 

  • Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321

    Google Scholar 

  • WHO | Diabetes country profiles 2016 (2016) WHO: World Health Organization. https://www.who.int/diabetes/country-profiles/en/#S.

  • WHO | Overweight and obesity (2018) WHO: World Health Organization. https://www.who.int/gho/ncd/risk_factors/overweight/en/.

  • Wilson JT, Cui W, Chaikof EL (2008) Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation. Nano Lett 8(7):1940–1948

    CAS  Google Scholar 

  • Xue Y, Xu X, Zhang XQ, Farokhzad OC, Langer R (2016) Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci U S A 113(20):5552–5557

    CAS  Google Scholar 

  • Xue S, Ren P, Wang P, Chen G (2018) Short and long-term potential role of carbon nanoparticles in total thyroidectomy with central lymph node dissection. Sci Rep 8(1):11936

    Google Scholar 

  • Yang J, Jiang LC, Zhang WD, Gunasekaran S (2010) A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82(1):25–33

    CAS  Google Scholar 

  • Ye H, Charpin-El Hamri G, Zwicky K, Christen M, Folcher M, Fussenegger M (2013) Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. Proc Natl Acad Sci U S A 110(1):141–146

    CAS  Google Scholar 

  • Yoo EH, Lee SY (2010) Glucose biosensors: an overview of use in clinical practice. Sensors (Basel) 10(5):4558–4576

    Google Scholar 

  • Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X (2006) Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 327(1–2):153–159

    CAS  Google Scholar 

  • Zhang Y, Liu Q, Yu J, Yu S, Wang J, Qiang L, Gu Z (2017) Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano 11(9):9223–9230

    CAS  Google Scholar 

  • Zhang Y, Yu J, Qiang L, Gu Z (2018) Nanomedicine for obesity treatment. Sci China Life Sci 61(4):373–379

    CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khulood M. Al-Khater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Khater, K.M., Al-Suhaimi, E.A. (2020). Application of Nanomaterials in Treatment of Endocrine Diseases. In: Khan, F. (eds) Applications of Nanomaterials in Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-4802-4_10

Download citation

Publish with us

Policies and ethics