Skip to main content

Immune Toxicity of and Allergic Responses to Nanomaterials

  • Chapter
  • First Online:
Allergy and Immunotoxicology in Occupational Health - The Next Step

Abstract

Over the past decade, the remarkable development of nanomaterials and nanotechnology has led to their use in many applications. But as the uses of nanomaterials have increased, so have concerns regarding their potential adverse effects (that is, nanotoxicity) in humans and the environment. Because the body’s immune systems are responsible for dealing with foreign substances, we likely should expect at least some interaction of nanomaterials with our immune systems with daily use of nanomaterials, and we must understand those interactions in order to use nanomaterials safely or to develop safer nanomaterials. In this review, we summarize recent advances in immunotoxicology studies of nanomaterials, especially (1) macrophage recognition of nanomaterials with particular emphasis on the effect of particle size, and (2) in vivo responses after skin exposure to nanomaterials, including the onset or aggravation of allergy. In addition, we discuss challenges to further understanding the immune system–nanomaterial interaction, with the goal of increasing the safety of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pietroiusti A, et al. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(5):e1513.

    Google Scholar 

  2. Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 2010;7:2.

    PubMed  PubMed Central  Google Scholar 

  3. Yamashita K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–8.

    CAS  PubMed  Google Scholar 

  4. Morishita Y, et al. Distribution of silver nanoparticles to breast Milk and their biological effects on breast-fed offspring mice. ACS Nano. 2016;10(9):8180–91.

    CAS  PubMed  Google Scholar 

  5. Liao HY, et al. Sneezing and allergic dermatitis were increased in engineered nanomaterial handling workers. Ind Health. 2014;52(3):199–215.

    PubMed  PubMed Central  Google Scholar 

  6. Wu WT, et al. Effect of nanoparticles exposure on fractional exhaled nitric oxide (FENO) in workers exposed to nanomaterials. Int J Mol Sci. 2014;15(1):878–94.

    PubMed  PubMed Central  Google Scholar 

  7. Alsaleh NB, Brown JM. Immune responses to engineered nanomaterials: current understanding and challenges. Curr Opin Toxicol. 2018;10:8–14.

    PubMed  Google Scholar 

  8. Fadeel B. Hide and Seek: nanomaterial interactions with the immune system. Front Immunol. 2019;10:133.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Canton J, et al. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13(9):621–34.

    CAS  PubMed  Google Scholar 

  10. Kanno S, et al. A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol Sci. 2007;97(2):398–406.

    CAS  PubMed  Google Scholar 

  11. Lara S, et al. Differential recognition of nanoparticle protein Corona and modified low-density lipoprotein by macrophage receptor with collagenous structure. ACS Nano. 2018;12(5):4930–7.

    CAS  PubMed  Google Scholar 

  12. Gallud A, et al. Macrophage activation status determines the internalization of mesoporous silica particles of different sizes: exploring the role of different pattern recognition receptors. Biomaterials. 2017;121:28–40.

    CAS  PubMed  Google Scholar 

  13. Tsugita M, et al. SR-B1 is a silica receptor that mediates canonical Inflammasome activation. Cell Rep. 2017;18(5):1298–311.

    CAS  PubMed  Google Scholar 

  14. Thakur SA, et al. Role of scavenger receptor a family in lung inflammation from exposure to environmental particles. J Immunotoxicol. 2008;5(2):151–7.

    CAS  PubMed  Google Scholar 

  15. Yamashita T, et al. Carbon Nanomaterials: efficacy and safety for Nanomedicine. Materials (Basel). 2012;5(2):350–63.

    CAS  Google Scholar 

  16. Morishige T, et al. Suppression of nanosilica particle-induced inflammation by surface modification of the particles. Arch Toxicol. 2012;86(8):1297–307.

    CAS  PubMed  Google Scholar 

  17. Nishijima N, et al. Human scavenger receptor A1-mediated inflammatory response to silica particle exposure is size specific. Front Immunol. 2017;8:379.

    PubMed  PubMed Central  Google Scholar 

  18. Handa T, et al. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice. Nanotechnology. 2017;28(13):135101.

    PubMed  Google Scholar 

  19. Jiang W, et al. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3(3):145–50.

    CAS  PubMed  Google Scholar 

  20. Lu F, et al. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small. 2009;5(12):1408–13.

    CAS  PubMed  Google Scholar 

  21. Jones SW, et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest. 2013;123(7):3061–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoppstadter J, et al. M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol. 2015;6:55.

    PubMed  PubMed Central  Google Scholar 

  23. Sun B, et al. NLRP3 inflammasome activation induced by engineered nanomaterials. Small. 2013;9(9–10):1595–607.

    CAS  PubMed  Google Scholar 

  24. Yazdi AS, et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci U S A. 2010;107(45):19449–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun B, et al. NADPH oxidase-dependent NLRP3 Inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes. Small. 2015;11(17):2087–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gasse P, et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007;117(12):3786–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reisetter AC, et al. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J Biol Chem. 2011;286(24):21844–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aoyama M, et al. Intracellular trafficking of particles inside endosomal vesicles is regulated by particle size. J Control Release. 2017;260:183–93.

    CAS  PubMed  Google Scholar 

  29. Nakayama M. Macrophage recognition of crystals and nanoparticles. Front Immunol. 2018;9:103.

    PubMed  PubMed Central  Google Scholar 

  30. Boraschi D, et al. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol. 2017;34:33–51.

    CAS  PubMed  Google Scholar 

  31. Wang M, et al. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine. 2018;13:4445–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9.

    CAS  PubMed  Google Scholar 

  33. Yoshioka Y, et al. Allergic responses induced by the Immunomodulatory effects of Nanomaterials upon skin exposure. Front Immunol. 2017;8:169.

    PubMed  PubMed Central  Google Scholar 

  34. van Loveren H, et al. Skin sensitization in chemical risk assessment: report of a WHO/IPCS international workshop focusing on dose-response assessment. Regul Toxicol Pharmacol. 2008;50(2):155–99.

    PubMed  Google Scholar 

  35. Lalko JF, et al. Chemical reactivity measurements: potential for characterization of respiratory chemical allergens. Toxicol In Vitro. 2011;25(2):433–45.

    CAS  PubMed  Google Scholar 

  36. Park YH, et al. Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization. Toxicol In Vitro. 2011;25(8):1863–9.

    CAS  PubMed  Google Scholar 

  37. Lee S, et al. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials. 2011;32(35):9434–43.

    CAS  PubMed  Google Scholar 

  38. Ilves M, et al. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Part Fibre Toxicol. 2014;11:38.

    PubMed  PubMed Central  Google Scholar 

  39. Chen BX, et al. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A. 1998;95(18):10809–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hirai T, et al. Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat Nanotechnol. 2016;11(9):808–16.

    CAS  PubMed  Google Scholar 

  41. Wiesner MR, et al. Meditations on the ubiquity and mutability of nano-sized materials in the environment. ACS Nano. 2011;5(11):8466–70.

    CAS  PubMed  Google Scholar 

  42. Hirai T, et al. Cutaneous exposure to agglomerates of silica nanoparticles and allergen results in IgE-biased immune response and increased sensitivity to anaphylaxis in mice. Part Fibre Toxicol. 2015;12:16.

    PubMed  PubMed Central  Google Scholar 

  43. Hirai T, et al. High-dose cutaneous exposure to mite allergen induces IgG-mediated protection against anaphylaxis. Clin Exp Allergy. 2016;46(7):992–1003.

    CAS  PubMed  Google Scholar 

  44. Deng ZJ, et al. Nanoparticle-induced unfolding of fibrinogen promotes mac-1 receptor activation and inflammation. Nat Nanotechnol. 2011;6(1):39–44.

    CAS  PubMed  Google Scholar 

  45. Aoyama M, et al. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes. Biochem Biophys Res Commun. 2016;480(4):690–5.

    CAS  PubMed  Google Scholar 

  46. Lara S, et al. Identification of receptor binding to the biomolecular Corona of nanoparticles. ACS Nano. 2017;11(2):1884–93.

    CAS  PubMed  Google Scholar 

  47. Hirai T, et al. Potential suppressive effects of two C60 fullerene derivatives on acquired immunity. Nanoscale Res Lett. 2016;11(1):449.

    PubMed  PubMed Central  Google Scholar 

  48. Huaux F. Emerging role of immunosuppression in diseases induced by micro- and Nano-particles: time to revisit the exclusive inflammatory scenario. Front Immunol. 2018;9:2364.

    PubMed  PubMed Central  Google Scholar 

  49. Tsugita M, et al. SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses. Part Fibre Toxicol. 2017;14(1):11.

    PubMed  PubMed Central  Google Scholar 

  50. Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol. 2017;17(1):21–9.

    CAS  PubMed  Google Scholar 

  51. Fadeel B, et al. Advanced tools for the safety assessment of nanomaterials. Nat Nanotechnol. 2018;13(7):537–43.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Yoshioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshioka, Y., Hirai, T., Tsutsumi, Y. (2020). Immune Toxicity of and Allergic Responses to Nanomaterials. In: Otsuki, T., Di Gioacchino, M., Petrarca, C. (eds) Allergy and Immunotoxicology in Occupational Health - The Next Step. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-4735-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4735-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4734-8

  • Online ISBN: 978-981-15-4735-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics