Skip to main content

Analysis of Barriers to Lean–Green Manufacturing System (LGMS): A Multi-criteria Decision-Making Approach

  • Conference paper
  • First Online:
Book cover Advances in Intelligent Manufacturing

Abstract

In order to reap the benefits of both lean and green would lead to a new system named Lean–Green Manufacturing System (LGMS). The adoption of LGMS in manufacturing industry can really yield advantages in terms of economic and environmental performance primarily and social performance too. The emerging economies like BRICS nations are boosting their manufacturing sector and generating an unsustainable situation. The adoption of LGMS can check the situation without any impact on the manufacturing sector growth. However, this change in manufacturing system is hindered by many issues without which the implementation of LGMS is not possible. This paper identifies 7 barriers to LGMS through the review of literature and consultation with experts. An application of VIKOR method would lead to the identification of the few most important barriers which should be taken first to address the issue faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazzazi, A. A., Osanloo, M., & Karimi, B. (2011). Deriving preference order of open pit mines equipment through MADM methods: Application of modified VIKOR method. Expert Syst. Appl., 38(3), 2550–2556.

    Article  Google Scholar 

  2. Chang, C. L., & Hsu, C. H. (2009). Multi-criteria analysis via the VIKOR method for prioritizing land-use restraint strategies in the Tseng-Wen reservoir watershed. J. Environ. Manag., 90(11), 3226–3230.

    Article  Google Scholar 

  3. Comm, C. L., & Mathaisel, D. F. X. (2000). A paradigm for benchmarking lean initiatives for quality improvement Benchmarking. Int. J., 7(2), 118–127.

    Google Scholar 

  4. Congbo, L., Fei, L., Xianchun, T., & Yanbin, D. (2010). A methodology for selecting a green technology portfolio based on synergy. Int. J. Prod. Res., 48(24), 7289–7302.

    Article  Google Scholar 

  5. Dave, D., & Choudhary, V. (2014). Barriers to implement green supply chain management in transmission tower manufacturing industry using interpretive structural modelling technique. Int. J. Eng. Res. Technol. 3(4).

    Google Scholar 

  6. Dashore, K., & Sohani, N. (2013). Green supply chain management: A hierarchical framework for barriers. Int. J. Eng. Trends Technol. (IJETT), 4(5), 2172–2182.

    Google Scholar 

  7. Deif, A. M. (2011). A system model for green manufacturing. J. Clean. Prod. 19(14), 1553–1559.

    Google Scholar 

  8. De Souza, L. B., & Pidd, M. (2011). Exploring the barriers to lean health care implementation. Public Money Manag., 31(1), 59–66.

    Article  Google Scholar 

  9. Friedman, P. (2008). Leaning toward green: Green your supply chain with lean practices.

    Google Scholar 

  10. Holt, D., & Gobadian, A. (2009). An empirical study of green supply chain management practices amongst UK manufacturers. J. Manuf. Technol. Manag., 20(7), 933–956.

    Article  Google Scholar 

  11. Hosseini, A. (2007). Identification of green management of system’s factors: A conceptualized model. Int. J. Manag. Sci. Eng. Manag., 2(3), 221–228.

    Google Scholar 

  12. Hsu, C. W., & Hu, A. H. (2008). Green Supply chain management in the electronic industry. Int. J. Sci. Technol., 5(2), 205–216.

    Google Scholar 

  13. King, A., & Lenox, M. (2001). Lean and green? An empirical examination of the relationship between lean production and environmental performance. Prod. Oper. Manag., 10(3), 244–256.

    Article  Google Scholar 

  14. Kleindorfer, P. R., & Saad, G. (2005). Managing disruption risks in supply chains. Prod. Oper. Manag., 14(1), 53–68.

    Article  Google Scholar 

  15. Kleindorfer, P. R., Singhal, K., & van Wassenhove, L. N. (2005). Sustainable operations management. Prod. Oper. Manag., 14, 482–492.

    Article  Google Scholar 

  16. Kumar, A. (2014). The challenges to the implementation of lean manufacturing. Int. J. Eng. Sci. Adv. Technol., 4(4), 307–312.

    Google Scholar 

  17. Kumar, A. (2014). A qualitative study on the barriers of lean manufacturing implementation: An Indian context (Delhi NCR Region). Int. J. Eng. Sci., 3(4), 21–28.

    Google Scholar 

  18. Kumar, K., Dhillon, V. S., Singh, P. L., & Sindhwani, R. (2019). Modeling and analysis for barriers in healthcare services by ISM and MICMAC analysis. In Advances in Interdisciplinary Engineering (pp. 501–510). Singapore: Springer.

    Google Scholar 

  19. Liu, X., Yang, J., Qu, S., Wang, L., Shishime, T. & Bao, C. (2012). Sustainable production: practices and determinant factors of green supply chain management of Chinese companies. Bus. Strat. Environ. 21(1), 1–16.

    Google Scholar 

  20. Mallick, Z., Ahmad, S., & Bisht, L. (2012). Barriers and enablers in implementation of lean six sigma in indian manufacturing industries. Int. J. Adv. Res. Manag., 3(1), 11–19.

    Google Scholar 

  21. Mittal, V. K., Sindhwani, R., Shekhar, H., & Singh, P. L. (2019). Fuzzy AHP model for challenges to thermal power plant establishment in India. Int. J. Oper. Res., 34(4), 562–581.

    Article  Google Scholar 

  22. Mudgal, R. K., Shankar, R., Talib, P. & Raj, T. (2009). Greening the supply chain practices: An Indian perspective of enablers’ relationship. Int. J. Adv. Oper. Manag. 1(2 and 3), 151–176.

    Google Scholar 

  23. Nightingale, D. J., & Mize, J. H. (2002). Development of a lean transformation maturity model. Int. J. Prod. Qual. Manag., 3, 15–30.

    Google Scholar 

  24. Oehmen, J. (2012). The guide to lean enablers for managing engineering programms. In Joint MIT-PMI-INCOSE Community of Practice on Lean in Program Management, Version 1.0.

    Google Scholar 

  25. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res., 156(2), 445–455.

    Article  MATH  Google Scholar 

  26. Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res., 178(2), 514–529.

    Article  MATH  Google Scholar 

  27. Phanden, R. K., Sindhwani, R., Kalsariya, V., & Salroo, F. (2019). Selection of material for electric arc spraying by using hierarchical entropy-TOPSIS approach. Int. J. Prod. Qual. Manag., 26(3), 276–289.

    Google Scholar 

  28. Porter, M. E., & van der Linde, C. (1995). Green and competitive: Ending the stalemate. Harvard Bus. Rev., 73, 120–134.

    Google Scholar 

  29. Rose, A. N. M., Deros, B. M., & Rahman, M. N. A. (2013). Lean manufacturing practices implementation in Malaysian’s SME automotive component industry. Appl. Mech. Mater., 315, 686–690.

    Article  Google Scholar 

  30. Rothenberg, S., Pil, F., & Maxwell, J. (2001). Lean, green, and the quest for environmental performance. Prod. Oper. Manag., 10(3), 228–243.

    Article  Google Scholar 

  31. Sanayei, A., Mousavi, S. F., & Yazdankhah, A. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Syst. Appl., 37(1), 24–30.

    Article  Google Scholar 

  32. Sangwan, K. S. (2006). Performance value analysis for justification of green manufacturing systems. J. Adv. Manuf. Syst.5(1), 59–73.

    Google Scholar 

  33. Sarkis, J., & Rasheed, A. (1995). Greening the manufacturing function. Bus Horiz., 38(5), 17–27.

    Article  Google Scholar 

  34. Sim, K. L., & Rogers, J. W. (2008). Implementing lean production systems: Barriers to change. Manag. Rese. News, 32(1), 37–49.

    Article  Google Scholar 

  35. Sindhwani, R., & Malhotra, V. (2016). Modelling the attributes affecting design and implementation of agile manufacturing system. Int. J. Process. Manag. Benchmarking, 6(2), 216–234.

    Article  Google Scholar 

  36. Sindhwani, R., & Malhotra, V. (2018). An integrated approach for implementation of agile manufacturing system in an Indian manufacturing industry. Benchmarking: Int. J. 25(4), 1106–1120.

    Google Scholar 

  37. Sindhwani, R., Mittal, V. K., Singh, P. L., Aggarwal, A., & Gautam, N. (2019a). Modelling and analysis of barriers affecting the implementation of lean green agile manufacturing system (LGAMS). Benchmarking: Int. J. 26(2), 498–529.

    Google Scholar 

  38. Sindhwani, R., Singh, P. L., Chopra, R., Sharma, K., Basu, A., Prajapati, D. K., & Malhotra, V. (2019b). Agility evaluation in the rolling industry: A case study. In Advances in Industrial and Production Engineering (pp. 753–770). Singapore: Springer.

    Google Scholar 

  39. Sindhwani, R., Singh, P. L., Iqbal, A., Prajapati, D. K., & Mittal, V. K. (2019c). Modeling and analysis of factors influencing agility in healthcare organizations: An ISM approach. In Advances in Industrial and Production Engineering (pp. 683–696). Singapore: Springer.

    Google Scholar 

  40. Singh, B., Garg, S. K., & Sharma, S. K. (2009). Reflective practice: Lean can be a survival strategy during recessionary times. Int. J. Prod. Perform. Manag., 58(8), 803–808.

    Article  Google Scholar 

  41. Singh, M. D., & Kant, R. (2008). Knowledge management barriers: An interpretive structural modeling approach. Int. J. Manag. Sci. Eng. Manag., 3, 141–150.

    Google Scholar 

  42. Singh, P. L., Sindhwani, R., Dua, N. K., Jamwal, A., Aggarwal, A., Iqbal, A., & Gautam, N. (2019). Evaluation of common barriers to the combined lean-green-agile manufacturing system by two-way assessment method. In Advances in Industrial and Production Engineering (pp. 653–672). Singapore: Springer.

    Google Scholar 

  43. Srivastava, S. K. (2007). Green supply chain management: A state-of-the-art literature review. Int. J. Manag. Rev., 9(1), 53–80.

    Article  Google Scholar 

  44. Yan, H., Fei, L., & Jinlang, S. (2008). A framework of scheduling models in machining workshop for green manufacturing. J. Adv. Manuf. Syst., 7(2), 319–322.

    Article  Google Scholar 

  45. Yu Lin, C., & Hui Ho, Y. (2008). An empirical study on logistics services provider, intention to adopt green innovations. J. Technol. Manag. Innov., 3(1), 17–26.

    Google Scholar 

  46. Wilson, L. (2010). How to implement lean manufacturing.

    Google Scholar 

Download references

Acknowledgments

Authors are highly grateful to all the experts who gave their valuable inputs to complete this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Sindhwani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sindhwani, R., Singh, P.L., Kaushik, V., Sharma, S., Phanden, R.K. (2020). Analysis of Barriers to Lean–Green Manufacturing System (LGMS): A Multi-criteria Decision-Making Approach. In: Krolczyk, G., Prakash, C., Singh, S., Davim, J. (eds) Advances in Intelligent Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4565-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4565-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4564-1

  • Online ISBN: 978-981-15-4565-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics