Skip to main content

Fighting Microbes with Microbes

  • Chapter
  • First Online:
Microbial Diversity, Interventions and Scope

Abstract

Microbes exhibit a strong association with human beings by colonizing different parts of the body. These microbes can be either beneficial or harmful. Pathogenic microbes are known to cause serious infections in humans and in other multicellular organisms which disturb the host physiology. These pathogenic microbes have intrinsic traits which contribute to their survival under hostile conditions, evasion of host immune responses and resistance to various therapeutic agents which in turn confers them with near invincibility. Therefore, exploration of novel agents which could specifically target and kill microbes is very much on the demand. Interestingly, one such agent could be microbes themselves. Utilizing microbial components and/or microbial whole cells either to target pathogens directly or at modulating the biological fitness of the host including boosting host immune responses. In this chapter, we discuss these various modes by which microbes and their products could be employed in combating microbial infections, eventually to improve healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU (2017) Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 49(1):1–11

    PubMed  Google Scholar 

  • Altamirano FLG, Barr JJ (2019) Phage therapy in the postantibiotic era. Clin Microbiol Rev 32(2):e00066–e00018

    CAS  Google Scholar 

  • Bassler BL (2002) Small talk: cell-to-cell communication in bacteria. Cell 109(4):421–424

    CAS  PubMed  Google Scholar 

  • Benz J, Meinhart A (2014) Antibacterial effector/immunity systems: it’s just the tip of the iceberg. Curr Opin Microbiol 17:1–10

    CAS  PubMed  Google Scholar 

  • Birri DJ, Brede DA, Nes IF (2012) Salivaricin D, a novel intrinsically trypsin-resistant antibiotic from Streptococcus salivarius 5M6c isolated from a healthy infant. Appl Environ Microbiol 78(2):402–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolmstedt AJ, O’Keefe BR, Shenoy SR, McMahon JB, Boyd MR (2001) Cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharide-specific manner. Mol Pharmacol 59(5):949–954

    CAS  PubMed  Google Scholar 

  • Boopathi S, Vashisth R, Manoharan P, Kandasamy R, Sivakumar N (2017) Stigmatellin Y–an anti-biofilm compound from Bacillus subtilis BR4 possibly interferes in PQS–PqsR mediated quorum sensing system in Pseudomonas aeruginosa. Bioorg Med Chem Lett 27(10):2113–2118

    CAS  PubMed  Google Scholar 

  • Borody TJ, Warren EF, Leis S, Surace R, Ashman O (2003) Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol 37(1):42–47

    PubMed  Google Scholar 

  • Borysowski J, Weber-Dąbrowska B, Górski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 231(4):366–377

    CAS  Google Scholar 

  • Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A et al (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517(7533):205

    CAS  PubMed  Google Scholar 

  • Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8(6):769–783

    CAS  PubMed  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen LJ, Han S, Huang YH, Brady SF (2017) Identification of the colicin V bacteriocin gene cluster by functional screening of a human microbiome metagenomic library. ACS infect Dis 4(1):27–32

    PubMed  PubMed Central  Google Scholar 

  • Cornick S, Tawiah A, Chadee K (2015) Roles and regulation of the mucus barrier in the gut. Tissue Barriers 3(1–2):e982426

    PubMed  PubMed Central  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95

    CAS  PubMed  Google Scholar 

  • Dashiff A, Junka RA, Libera M, Kadouri DE (2011) Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol 110(2):431–444

    CAS  PubMed  Google Scholar 

  • De Kraker ME, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13(11):e1002184

    PubMed  PubMed Central  Google Scholar 

  • De Leon LM, Watson JB, Kelly CR (2013) Transient flare of ulcerative colitis after fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin Gastroenterol Hepatol 11(8):1036–1038

    PubMed  Google Scholar 

  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K et al (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25(5):730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H et al (2013) Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14(1):26–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh HS, Liu Y, Menkiti OR, Mei J, Dai N, O’leary CE et al (2014) The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat Med 20(5):524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449(7164):811

    CAS  PubMed  Google Scholar 

  • Donia MS, Fischbach MA (2015) Small molecules from the human microbiota. Science 349(6246):1254766

    PubMed  PubMed Central  Google Scholar 

  • Donia MS, Cimermancic P, Schulze CJ, Brown LCW, Martin J, Mitreva M et al (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158(6):1402–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fachi JL, de Souza Felipe J, Pral LP, da Silva BK, Corrêa RO, de Andrade MCP et al (2019) Butyrate protects mice from Clostridium difficile-induced colitis through an HIF-1-dependent mechanism. Cell Rep 27(3):750–761

    CAS  PubMed  Google Scholar 

  • Feng Q, Chen WD, Wang YD (2018) Gut microbiota: an integral moderator in health and disease. Front Microbiol 9:151

    PubMed  PubMed Central  Google Scholar 

  • Gervasi T, Horn N, Wegmann U, Dugo G, Narbad A, Mayer MJ (2014) Expression and delivery of an endolysin to combat Clostridium perfringens. Appl Microbiol Biotechnol 98(6):2495–2505

    CAS  PubMed  Google Scholar 

  • Ghosh C, Sarkar P, Issa R, Haldar J (2019) Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol 27:323

    CAS  PubMed  Google Scholar 

  • Gupta S, Tang C, Tran M, Kadouri DE (2016) Effect of predatory bacteria on human cell lines. PLoS One 11(8):e0161242

    PubMed  PubMed Central  Google Scholar 

  • Hajam IA, Dar PA, Won G, Lee JH (2017) Bacterial ghosts as adjuvants: mechanisms and potential. Vet Res 48(1):37

    PubMed  PubMed Central  Google Scholar 

  • Herp S, Brugiroux S, Garzetti D, Ring D, Jochum LM, Beutler M et al (2019) Mucispirillum schaedleri antagonizes Salmonella virulence to protect mice against colitis. Cell Host Microbe 25(5):681–694

    CAS  PubMed  Google Scholar 

  • Hols P, Ledesma-García L, Gabant P, Mignolet J (2019) Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends Microbiol 27:690. https://doi.org/10.1016/j.tim.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10(3):159

    CAS  PubMed  Google Scholar 

  • Hsiao A, Ahmed AS, Subramanian S, Griffin NW, Drewry LL, Petri WA et al (2014) Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515(7527):423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144(11):3039–3047

    CAS  PubMed  Google Scholar 

  • Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, Tagg JR (2007) Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 73(4):1107–1113

    CAS  PubMed  Google Scholar 

  • Jacobs MC, Haak BW, Hugenholtz F, Wiersinga WJ (2017) Gut microbiota and host defense in critical illness. Curr Opin Crit Care 23(4):257–263

    PubMed  Google Scholar 

  • Jani AJ, Cotter PA (2010) Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8(1):2–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri DE, To K, Shanks RM, Doi Y (2013) Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. PLoS One 8(5):e63397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14(7):685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee IK, Yun BS et al (2019) Bile acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit Clostridium difficile: role of secondary bile acids. Cell Chem Biol 26(1):27–34

    CAS  PubMed  Google Scholar 

  • Kim Y, Lee D, Kim D, Cho J, Yang J, Chung M et al (2008) Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch Pharm Res 31(4):468

    CAS  PubMed  Google Scholar 

  • Kohli N, Crisp Z, Riordan R, Li M, Alaniz RC, Jayaraman A (2018) The microbiota metabolite indole inhibits Salmonella virulence: involvement of the PhoPQ two-component system. PLoS One 13(1):e0190613

    PubMed  PubMed Central  Google Scholar 

  • Lagenaur LA, Sanders-Beer BE, Brichacek B, Pal R, Liu X, Liu Y et al (2011) Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol 4(6):648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Libertucci J, Young VB (2019) The role of the microbiota in infectious diseases. Nat Microbiol 4(1):35

    CAS  PubMed  Google Scholar 

  • Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8(3):162

    PubMed  PubMed Central  Google Scholar 

  • Litvak Y, Mon KK, Nguyen H, Chanthavixay G, Liou M, Velazquez EM et al (2019) Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition. Cell Host Microbe 25(1):128–139

    CAS  PubMed  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci 104(27):11197–11202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci 106(12):4629–4634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lubitz P, Mayr UB, Lubitz W (2009) Applications of bacterial ghosts in biomedicine, Pharmaceutical biotechnology. Springer, New York, pp 159–170

    Google Scholar 

  • Lukáš F, Gorenc G, Kopečný J (2008) Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria. Folia Microbiol 53(3):221–224

    Google Scholar 

  • Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T (2013) Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157: H7 in the mouse intestine. PloS one 8(1):e53957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Momose Y, Hirayama K, Itoh K (2008) Competition for proline between indigenous Escherichia coli and E. coli O157: H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157: H7. Antonie Van Leeuwenhoek 94(2):165–171

    CAS  PubMed  Google Scholar 

  • Monnappa AK, Bari W, Choi SY, Mitchell RJ (2016) Investigating the responses of human epithelial cells to predatory bacteria. Sci Rep 6:33485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Natividad JM, Hayes CL, Motta JP, Jury J, Galipeau HJ, Philip V et al (2013) Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950. Appl Environ Microbiol 79(24):7745–7754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negus D, Moore C, Baker M, Raghunathan D, Tyson J, Sockett RE (2017) Predator versus pathogen: how does predatory Bdellovibrio bacteriovorus interface with the challenges of killing gram-negative pathogens in a host setting? Annu Rev Microbiol 71:441–457

    CAS  PubMed  Google Scholar 

  • Nusrat A, von Eichel-Streiber C, Turner JR, Verkade P, Madara JL, Parkos CA (2001) Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 69(3):1329–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh S, Go GW, Mylonakis E, Kim Y (2012) The bacterial signalling molecule indole attenuates the virulence of the fungal pathogen Candida albicans. J Appl Microbiol 113(3):622–628

    CAS  PubMed  Google Scholar 

  • O’Toole RF, Gautam SS (2018) The host microbiome and impact of tuberculosis chemotherapy. Tuberculosis 113:26–29

    PubMed  Google Scholar 

  • Paharik AE, Parlet CP, Chung N, Todd DA, Rodriguez EI, Van Dyke MJ et al (2017) Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe 22(6):746–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park H, Yeo S, Ji Y, Lee J, Yang J, Park S et al (2014) Autoinducer-2 associated inhibition by Lactobacillus sakei NR28 reduces virulence of enterohaemorrhagic Escherichia coli O157: H7. Food Control 45:62–69

    CAS  Google Scholar 

  • Pickard JM, Zeng MY, Caruso R, Núñez G (2017) Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279(1):70–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pujol A, Crost EH, Simon G, Barbe V, Vallenet D, Gomez A, Fons M (2011) Characterization and distribution of the gene cluster encoding RumC, an anti-Clostridium perfringens bacteriocin produced in the gut. FEMS Microbiol Ecol 78(2):405–415

    CAS  PubMed  Google Scholar 

  • Russell AB, Peterson SB, Mougous JD (2014a) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12(2):137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA et al (2014b) A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16(2):227–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salomon RA, Farías RN (1992) Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174(22):7428–7435

    Google Scholar 

  • Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ, de Boer JD et al (2016) The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65(4):575–583

    CAS  PubMed  Google Scholar 

  • Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F et al (2019) The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50(2):432–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Secchi M, Xu Q, Lusso P, Vangelista L (2009) The superior folding of a RANTES analogue expressed in lactobacilli as compared to mammalian cells reveals a promising system to screen new RANTES mutants. Protein Expr Purif 68(1):34–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skelly AN, Sato Y, Kearney S, Honda K (2019) Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 19:1

    Google Scholar 

  • Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11(4):227

    CAS  PubMed  Google Scholar 

  • Sorg JA, Sonenshein AL (2008) Bile salts and glycine as co germinants for Clostridium difficile spores. J Bacteriol 190(7):2505–2512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB (2015) Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep 10(11):1861–1871

    CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449(7164):804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vancamelbeke M, Vermeire S (2017) The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol 11(9):821–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira AT, Rocha VM, Tavares L, Garcia CC, Teixeira MM, Oliveira SC et al (2016) Control of Klebsiella pneumoniae pulmonary infection and immunomodulation by oral treatment with the commensal probiotic Bifidobacterium longum 51A. Microbes Infect 18(3):180–189

    PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C et al (2016) Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535(7613):511

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vani Janakiraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seenivasan, B., Prakash, C.M., Janakiraman, V. (2020). Fighting Microbes with Microbes. In: Sharma, S., Sharma, N., Sharma, M. (eds) Microbial Diversity, Interventions and Scope. Springer, Singapore. https://doi.org/10.1007/978-981-15-4099-8_19

Download citation

Publish with us

Policies and ethics