Skip to main content

A Survey Report on Recent Progresses in Nearest Neighbor Realization of Quantum Circuits

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1154))

  • 934 Accesses

Abstract

The thrive of attending very fast computation has bred the ideas for new computing paradigms like optical computing, quantum computing, and in the last few years, quantum computing has left an impressive footprint before the design industry. Even companies like IBM, Microsoft are claiming the initiation of physical implementation of quantum circuits in on-chip units. But the successful implementation of this circuit needs to satisfy several design constraints and one such constraint is Nearest Neighbor (NN) enforcement. To introduce the reader with the progress made in NN-based implementation of quantum circuits, here, in this survey paper, we have tried to include some of the peer-reviewed works in our content. While describing the works, we have added necessary examples so that it becomes easy to follow for a reader. To this extent, we also have introduced the NN logic and its related cost functions in our survey report.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J. et al.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. commun. 5, (2014)

    Google Scholar 

  2. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a largescale ion-trap quantum computer. Nature 417(6890), 709–711 (2002)

    Article  Google Scholar 

  3. Taylor, J., Petta, J., Johnson, A., Yacoby, A., Marcus, C., Lukin, M.: Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76(3), 035315 (2007)

    Article  Google Scholar 

  4. Blais, A., Gambetta, J., Wallraff, A., Schuster, D., Girvin, S., Devoret, M., Schoelkopf, R.: Quantum information processing with circuit quantum electrodynamics. Phys. Rev. B. 75(3), 032329 (2007)

    Google Scholar 

  5. Criger, B., Passante, G., Park, D., Laflamme, R.: Recent advances in nuclear magnetic resonance quantum information processing. Philos. Trans. R. Soc. London A: Math., Phys. and Eng. Sci. 370(1976), 4620–4635 (2012)

    Article  Google Scholar 

  6. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  Google Scholar 

  7. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. In: IEEE International Symposium on Multiple-Valued Logic (ISMVL), pp. 288–293, Finland (2011)

    Google Scholar 

  8. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighborarchitectures. Quant. Inf. Proc. 10(3), 355–377 (2011)

    Article  Google Scholar 

  9. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distancein linear nearest neighbor architectures. In: 50th Design Automation Conference, USA (2013)

    Google Scholar 

  10. Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. on CAD 33(12), 1818–1831 (2014)

    Google Scholar 

  11. Kole, A., Datta, K., Sengupta, I.: A heuristic for linear nearest neighbor realization of quantum circuits by SWAP gate insertion using N-gate lookahead. IEEE J. Emerg. Sel. Topics Circ. Syst. 6(1), 62–72 (2016)

    Google Scholar 

  12. Shafaei, A., Saeedi, M., Pedram, M.: Qubit placement to minimize communication overhead in 2D quantum architectures. In: Proceeding of ASP Design Automation Conference, pp. 495–500, Singapore (2014)

    Google Scholar 

  13. Shrivastwa, R. R., Datta, K., Sengupta, I.: Fast qubit placement in 2D architecture using nearestneighbor realization. In: Proceeding of Int’l Symposium on Nanoelectronic and Information Systems, pp. 95–100, 2015

    Google Scholar 

  14. Bhattacharjee, A., Bandyopadhyay, C., Wille, R., Drechsler, R., Rahaman, H.: A novel approach for nearest neighbor realization of 2d quantum circuits. IEEE Comput. Soc. Ann. Symp. on VLSI (2018). https://doi.org/10.1109/ISVLSI.2018.00063

    Article  Google Scholar 

  15. Bhattacharjee, A., Bandyopadhyay, C., Biswal, L., Rahaman, H.: A heuristic qubit placement strategy for nearest neighbor realization in 2d architecture. In 22nd International Symposium on VLSI Design and Test, pp. 593–605, Singapore (2018)

    Google Scholar 

  16. Kole, A., Datta, K., Sengupta, I.: A new heuristic for n-dimensional nearest neighbour realization of a quantum circuit. IEEE Trans. on Comput.-Aided Des. of Inte. Circ. and Sys. 37(1), pp. (99) 1–1, (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Bhattacharjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharjee, A., Bandyopadhyay, C., Mondal, B., Rahaman, H. (2020). A Survey Report on Recent Progresses in Nearest Neighbor Realization of Quantum Circuits. In: Pant, M., Kumar Sharma, T., Arya, R., Sahana, B., Zolfagharinia, H. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1154. Springer, Singapore. https://doi.org/10.1007/978-981-15-4032-5_7

Download citation

Publish with us

Policies and ethics