Skip to main content

Clifford+T-based Fault-Tolerant Quantum Implementation of Code Converter Circuit

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Abstract

Design of high-scalable quantum information processor (QIP) towards achieving quantum supremacy is still now in infancy due to catastrophic obstacles from decoherence. In way to address this problem, the use of quantum error correction code (QECC) and fault-tolerant circuit is highly enticieable, which further promises not only to protect extreme fragile quantum state from decoherence but also from other noises. It is seen that the fault-tolerant property can be achieved by the use of transversal primitive unitary operators. Here, we show the design of fault-tolerant implementation of BCD-to-Excess-3 and 2’s complement code converter which is pivotal in the design of high-scalable QIP. In this transformation process, first we transform the input circuit to an intermediate form where we obtain its NCV-based representation. In the second phase, this design is extensively used to form the fault-tolerant design. We also have compared our design with some of the existing works and have registered 39% improvement in design cost. In terms of T-count and T-depth metrics, our proposed designs also provide near-optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Statist. Comput. 26, 1484–1509 (1997)

    Google Scholar 

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Google Scholar 

  3. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5(3), 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  4. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8) (1965)

    Google Scholar 

  5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Develop. 17(6), 525–532 (1973).https://doi.org/10.1147/rd.176.0525

  6. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507–531 (1986)

    Google Scholar 

  7. https://blog.usejournal.com/quantum-computings-promise-for-the-brave&-new-world-fa15b651cced

  8. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  Google Scholar 

  9. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771

    Google Scholar 

  10. Preskill, J.: Fault tolerant quantum computation. In: Lo, H.K., Popescu, S., Spiller, T. (eds.), Introduction to Quantum Computation and Information, Chap. 8, p. 213. World Scientific, River Edge, NJ (1998). https://arxiv.org/abs/quant-ph/9712048

  11. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)

    Google Scholar 

  12. Fowler, A.G., Stephens, A.M., Groszkowski, P.: High threshold universal quantum computation on the surface code. Phys. Rev. A. 80, 052312 (2009)

    Google Scholar 

  13. Paetznick, A., Reichard, B.W.: Universal fault-tolerant quantum computation with only transver-sal gates and error correction. Phys. Rev. Lett. 111(9), 090505 (2013)

    Google Scholar 

  14. Jones, N.C., Whitfield, J.D., McMahon, P.L., Yung, M.H., Meter, R.V., Aspuru-Guzik, A., Yamamoto, Y.: Faster quantum chemistry simulation on fault-tolerant quantum computers. New. J. Phys. 14, 115023 (2012)

    Google Scholar 

  15. https://bitshifters0.files.wordpress.com/2015/03/digital-logic-and-computer-design-by-m-morris-mano-2nd-edition.pdf

  16. Saravanan, M., Manic, K.S.: Energy efficient code converters using reversible logic gates. In: IEEE International Conference Green High Performance Computing (ICGHPC), pp. 1–6 (2013)

    Google Scholar 

  17. Thapliyal, H., Arabnia, H.R., Bajpai, R., Sharma, K.K.: Design of testable reversible sequential circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(7), 1201–1209 (2013)

    Google Scholar 

  18. Haghparast, M., Hajizadeh, M., Hajizadeh, R., Bashiri, R.: On the synthesis of different nanometric reversible converters. Middle-East J. Sci. Res. 7, 715–720 (2011)

    Google Scholar 

  19. Maity, H., Barik, A.K., Biswas, A., Bhattacharjee, A.K., Pal, A.: J. Circuit. Syst. Comput. 27, 1850184 (2018)

    Google Scholar 

  20. Maity, H., Biswas, A., Pal, A., Bhattacharjee, A.K.: Design of BCD to Excess-3 code converter circuit with optimized quantum cost, garbage output and constant input using reversible gate. Int. J. Quant. Inf. 16(07), 1850061 (2018)

    Google Scholar 

  21. Biswal, L., Das, R., Bandyopadhyay, C., Chattopadhyay, A., Rahaman, H.: A template-based technique for efficient Clifford+T-based quantum circuit implementation. Microelectron. J. 81, 58–68 (2018)

    Google Scholar 

  22. Shukla, V., Singh, O.P., Mishra, G.R., Tiwari, R.K.: Design of a 4-bit 2’s complement reversible circuit for arithmetic logic unit applications. In: Proceedings of International Conference in Communication Computing and Information Technology (ICCCMIT) Special Issue of International Journal of Computer Applications, pp. 1–5. Chennai, India (2012)

    Google Scholar 

  23. Gandhi, M., Devishree, J., Venkatesh, J., Sathish Mohan, S.: Design of reversible circuits for code converter and binary incrementer. J. Inf. Technol. Mech. Eng. (IJITME) 1, 24–33 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmidhar Biswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biswal, L., Bandyopadhyay, C., Rahaman, H. (2020). Clifford+T-based Fault-Tolerant Quantum Implementation of Code Converter Circuit. In: Pant, M., Kumar Sharma, T., Arya, R., Sahana, B., Zolfagharinia, H. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1154. Springer, Singapore. https://doi.org/10.1007/978-981-15-4032-5_58

Download citation

Publish with us

Policies and ethics