Skip to main content

Image Denoising Using DnCNN: An Exploration Study

  • Conference paper
  • First Online:
Advances in Communication Systems and Networks

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 656))

Abstract

Image denoising is a crucial pre-processing step on images to restore the original image by suppressing the associated noise. This paper extends the performance study of the denoising convolutional neural network (DnCNN) architecture on images having the Gaussian noise. The DnCNN is an efficient deep learning model to estimate a residual image from the input image with the Gaussian noise. The underlying noise-free image can be estimated as the difference between the noisy image and the residue image. In this paper, we analyse the performance of DnCNN with data augmentation, batch normalisation and dropout. The experiments are conducted on the Berkeley natural image dataset, and quantitative and qualitative study has been performed. The comparison of the experimental results demonstrates that the DnCNN model converges at a faster rate and works well with a smaller dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandey A, Singh KK (2015) Analysis of noise models in digital image processing. Int J Sci Technol Manag 4(01):140–144

    Google Scholar 

  2. Jain V Seung S (2009) Natural image denoising with convolutional networks. In: Advances in neural information processing systems, pp 769–776

    Google Scholar 

  3. Burger HC, Schuler CJ, Harmeling S (2012) Image denoising: can plain neural networks compete with BM3D? In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 2392–2399

    Google Scholar 

  4. Xie J, Xu L, Chen E (2012) Image denoising and inpainting with deep neural networks. In: Advances in neural information processing systems, pp 341–349

    Google Scholar 

  5. Buades A, Coll B, Morel J-M (2005) A non-local algorithm for image denoising. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 2. IEEE, pp 60–65

    Google Scholar 

  6. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  7. Sudeep PV, Palanisamy P, Kesavadas C, Rajan J (2015) Nonlocal linear minimum mean square error methods for denoising MRI. Biomed Signal Process Control 20:125–134

    Google Scholar 

  8. Guo T, Dong J, Li H, Gao Y (2017). Simple convolutional neural network on image classification. In: 2017 IEEE 2nd international conference on big data analysis (ICBDA). IEEE, pp 721–724

    Google Scholar 

  9. Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33(2):156–158

    Google Scholar 

  10. Haralick RM, Shapiro LG (1985) Image segmentation techniques. Comput Vis Graph Image Process 29(1):100–132

    Google Scholar 

  11. Dong W, Zhang L, Shi G, Li X (2012) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  Google Scholar 

  12. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  13. Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML workshop on unsupervised and transfer learning, pp 37–49

    Google Scholar 

  14. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

    Google Scholar 

  15. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  MathSciNet  Google Scholar 

  16. Roth S, Black MJ (2009) Fields of experts. Int J Comput Vis 82(2):205

    Google Scholar 

  17. Norbert W (1950) Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications. MIT Press, Cambridge

    Google Scholar 

  18. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: ICCV, vol 98, p 2

    Google Scholar 

  19. Yang G-Z, Burger P, Firmin DN, Underwood SR (1996) Structure adaptive anisotropic image filtering. Image Vis Comput 14(2):135–145

    Google Scholar 

  20. Yang R, Yin L, Gabbouj M, Astola J, Neuvo Y (1995) Optimal weighted median filtering under structural constraints. IEEE Trans Signal Process 43(3):591–604

    Article  Google Scholar 

  21. Aravind BN, Suresh KV (2017) Hybrid image denoising. In: 2017 international conference on electrical, electronics, communication, computer, and optimization techniques (ICEECCOT). IEEE, pp 46–49

    Google Scholar 

  22. Oja E, Hyvarinen A (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4-5):411–430

    Google Scholar 

  23. Kaur L, Gupta S, Chauhan RC (2002) Image denoising using wavelet thresholding. In: ICVGIP, vol 2, pp 16–18

    Google Scholar 

  24. Chen Y, Pock T (2016) Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans Pattern Anal Mach Intell 39(6):1256–1272

    Article  Google Scholar 

  25. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  26. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence

    Google Scholar 

  27. Alsaiari A, Rustagi R, Thomas MM, Forbes AG, et al (2019) Image denoising using a generative adversarial network. In: 2019 IEEE 2nd international conference on information and computer technologies (ICICT). IEEE, pp 126–132

    Google Scholar 

  28. LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  29. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

    Google Scholar 

  30. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

    Google Scholar 

  31. Russakovsky O, Deng J, Hao S, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis (IJCV) 115(3):211–252

    Article  MathSciNet  Google Scholar 

  32. Li X, Chen S, Hu X, Yang J (2019) Understanding the disharmony between dropout and batch normalization by variance shift. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2682–2690

    Google Scholar 

  33. Hore A, Ziou (2010) Image quality metrics: PSNR vs. SSIM. In: 2010 20th international conference on pattern recognition. IEEE, pp 2366–2369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineeth Murali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murali, V., Sudeep, P.V. (2020). Image Denoising Using DnCNN: An Exploration Study. In: Jayakumari, J., Karagiannidis, G., Ma, M., Hossain, S. (eds) Advances in Communication Systems and Networks . Lecture Notes in Electrical Engineering, vol 656. Springer, Singapore. https://doi.org/10.1007/978-981-15-3992-3_72

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3992-3_72

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3991-6

  • Online ISBN: 978-981-15-3992-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics