Skip to main content

Study on Automatic Classification of Arrhythmias

  • Chapter
  • First Online:
Book cover Feature Engineering and Computational Intelligence in ECG Monitoring

Abstract

Electrocardiogram (ECG) signals reveal the electrical activity of the heart and can be used to diagnose heart abnormalities. In the past few decades, ECG signals have been utilized for automatic arrhythmia detection owing to the noninvasive nature and convenience of electrocardiography. However, it is difficult to extract and select reliable features or design robust and generic classifiers because of the complexity and diversity of ECG signals. Consequently, improving the classification rate of arrhythmias still remains a considerable challenge. To resolve this pressing issue, we have proposed a model composed of preprocessing, feature extraction, and classification, where the correct implementation of each part is crucial for final arrhythmia identification. In this chapter, the literature on existing algorithms is comprehensively reviewed according to the aforementioned primary aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberdi, A., Aztiria, A., Basarab, A.: Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J. Biomed. Inform. 59, 49–75 (2016)

    Article  PubMed  Google Scholar 

  2. He, R., Wang, K., Li, Q., Yuan, Y., Zhao, N., Liu, Y., Zhang, H.: A novel method for the detection of R-peaks in ECG based on k-nearest neighbors and particle swarm optimization. EURASIP J. Adv. Signal Process. 82, 1–14 (2017)

    CAS  Google Scholar 

  3. Banerjee, S., Mitra, M.: Application of Cross Wavelet Transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63, 326–333 (2014)

    Article  Google Scholar 

  4. De Lannoy, G., François, D., Delbeke, J., Verleysen, M.: Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 59, 241–247 (2012)

    Article  PubMed  Google Scholar 

  5. De Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng. 51, 1196–1206 (2004)

    Article  PubMed  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  7. He, R., Wang, K., Zhao, N., Liu, Y., Yuan, Y., Li, Q., Zhang, H.: Automatic detection of atrial fibrillation based on continuous wavelet transform and 2d convolutional neural networks. Front. Physiol. 9, 1206 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P., Ng, A.Y.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Llamedo, M., Martinez, J.P.: Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58, 616–625 (2011)

    Article  PubMed  Google Scholar 

  10. Lynn, P.: Recursive digital filters for biological signals. Med. Biol. Eng. Comput. 9, 37–43 (1979)

    Article  Google Scholar 

  11. Ferrara, E.R., Widraw, B.: Fetal electrocardiogram enhancement by time-sequenced adaptive filtering. I.E.E.E. Trans. Biomed. Eng. 29, 458–460 (1982)

    CAS  Google Scholar 

  12. Yelderman, M., Widrow, B., Cioffi, J.M., Hesler, E., Leddy, J.A.: ECG enhancement by adaptive cancellation of electrosurgical interference. I.E.E.E. Trans. Biomed. Eng. 30, 392–398 (1983)

    CAS  Google Scholar 

  13. Thakor, N.V., Zhu, Y.-S.: Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. I.E.E.E. Trans. Biomed. Eng. 38, 785–794 (1991)

    CAS  Google Scholar 

  14. Xue, Q., Hu, Y.H., Tompkins, W.J.: Neural-network-based adaptive matched filtering for QRS detection. I.E.E.E. Trans. Biomed. Eng. 39, 317–329 (1992)

    CAS  Google Scholar 

  15. Phukpattaranont, P.: QRS detection algorithm based on the quadratic filter. Expert Syst. Appl. 42, 4867–4877 (2015)

    Article  Google Scholar 

  16. Elgendi, M.: Fast QRS detection with an optimized knowledge-based method: evaluation on 11 standard ECG databases. PLoS One. 8, 1–18 (2013)

    Google Scholar 

  17. Singh, B.N., Tiwari, A.K.: Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Process. 16, 275–287 (2006)

    Article  Google Scholar 

  18. Chen, S.-W., Chen, H.-C., Chan, H.-L.: A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. Comput. Methods Programs Biomed. 82, 187–195 (2006)

    Article  PubMed  Google Scholar 

  19. Zadeh, A.E., Khazaee, A., Ranaee, V.: Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput. Methods Programs Biomed. 99, 179–194 (2010)

    Article  PubMed  Google Scholar 

  20. Sameni, R., Shamsollahi, M.B., Jutten, C., Clifford, G.D.: A nonlinear Bayesian filtering framework for ECG denoising. I.E.E.E. Trans. Biomed. Eng. 54, 2172–2185 (2007)

    Google Scholar 

  21. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. I.E.E.E. Trans. Biomed. Eng. 32, 230–236 (1985)

    CAS  Google Scholar 

  22. Arzeno, N.M., Deng, Z.-D., Poon, C.-S.: Analysis of first-derivative based QRS detection algorithms. I.E.E.E. Trans. Biomed. Eng. 55, 478–484 (2008)

    Google Scholar 

  23. Merah, M., Abdelmalik, T.A., Larbi, B.H.: R-peaks detection based on stationary wavelet transform. Comput. Methods Prog. Biomed. 121, 149–160 (2015)

    Article  CAS  Google Scholar 

  24. Berwal, D., Kumar, A., Kumar, Y.: Design of high performance QRS complex detector for wearable healthcare devices using biorthogonal spline wavelet transform. ISA Trans. 81, 222–230 (2018)

    Article  PubMed  Google Scholar 

  25. Mehta, S.S., Lingayat, N.: A combined entropy-based method for detection of QRS complexes in 12-lead electrocardiogram using SVM. Comput. Biol. Med. 38, 138–145 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. Poli, R., Cagnoni, S., Valli, G.: Genetic design of optimum linear and nonlinear QRS detectors. I.E.E.E. Trans. Biomed. Eng. 42, 1137–1141 (1995)

    CAS  Google Scholar 

  27. Kim, H., Yazicioglu, R.F., Merken, P., van Hoof, C., Yoo, H.-J.: ECG signal compression and classification algorithm with quad level vector for ECG holter system. IEEE Trans. Inf. Technol. Biomed. 14, 93–100 (2010)

    Article  PubMed  Google Scholar 

  28. Moody, G.B., Mark, R.G.: The MIT-BIH arrhythmia database on CD-ROM and software for use with it. In: 1990 Proceedings Computers in Cardiology, pp. 185–188 (1990)

    Google Scholar 

  29. American Heart Association: AHA database. http://www.ahadata.com/ (1998)

  30. Van Bemmel, J.H., Williams, J.L.: Standardisation and validation of medical decision support systems: the CSE project. Methods Inf. Med. 29, 261–262 (1990)

    Article  PubMed  Google Scholar 

  31. Liu, F., Liu, C., Zhao, L., Zhang, X., Wu, X., Xu, X., Liu, Y., Ma, C., Wei, S., He, Z., Li, J., Ng, E.Y.: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J. Med. Imaging Health Inform. 8, 1368–1373 (2018)

    Article  Google Scholar 

  32. Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N.: A survey on addressing high-class imbalance in big data. J. Big Data. 5, 1–30 (2018)

    Article  Google Scholar 

  33. Guo, H., Li, Y., Shang, J., Gu, M., Huang, Y., Gong, B.: Learning from class imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  34. Chawla, N., Bowyer, K., Hall, L.O., Philip Kegelmeyer, W.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  35. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008)

    Google Scholar 

  36. Guo, H., Viktor, H.L.: Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. ACM SIGKDD Explor. Newslett. 6, 30–39 (2004)

    Article  Google Scholar 

  37. Maldonado, S., López, J., Vairetti, C.: An alternative SMOTE oversampling strategy for high-dimensional datasets. Appl. Soft Comput. 76, 380–389 (2019)

    Article  Google Scholar 

  38. Jiang, J., Zhang, H., Pi, D., Dai, C.: A novel multi-module neural network system for imbalanced heartbeats classification. Expert Syst. Appl. X. 1, 100003 (2019)

    Google Scholar 

  39. Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 40, 3358–3378 (2007)

    Article  Google Scholar 

  40. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18, 63–77 (2006)

    Article  Google Scholar 

  41. Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neural networks on imbalanced data sets. In: International Joint Conference on Neural Networks, pp. 4368–4374 (2016)

    Google Scholar 

  42. Maldonado, S., López, J.: Imbalanced data classification using second-order cone programming support vector machines. Pattern Recogn. 47, 2070–2079 (2014)

    Article  Google Scholar 

  43. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class imbalance learning. IEEE Trans. Syst. Man Cybern. B. 39, 539–550 (2009)

    Article  Google Scholar 

  44. Havaei, M., Davy, A., Wardefarley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  PubMed  Google Scholar 

  45. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2672–2680 (2014)

    Google Scholar 

  46. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 1–14 (2016)

    Google Scholar 

  47. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv:1711.04340v2 (2018)

    Google Scholar 

  48. Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using gan for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 289–293 (2018)

    Google Scholar 

  49. Bolelli, F., Pollastri, F., Palacios, R.P., Grana, C.: Improving skin lesion segmentation with generative adversarial networks. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), pp. 442–443 (2018)

    Google Scholar 

  50. Lima, J.L., Macêdo, D., Zanchettin, C.: Heartbeat anomaly detection using adversarial oversampling. arXiv preprint arXiv:1901.09972 (2019)

    Google Scholar 

  51. Korürek, M., Doğan, B.: ECG beat classification using particle swarm optimization and radial basis function neural network. Expert Syst. Appl. 37, 7563–7569 (2010)

    Google Scholar 

  52. Kumar, R.G., Kumaraswamy, Y.S.: Investigation and classification of ECG beat using input output additional weighted feed forward neural network. In: International Conference on Signal Processing, Image Processing & Pattern Recognition (ICSIPR), pp. 200–205 (2013)

    Google Scholar 

  53. Ye, C., Kumar, B.V.K.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. I.E.E.E. Trans. Biomed. Eng. 59, 2930–2941 (2012)

    Google Scholar 

  54. Chen, S.S., Hua, W., Li, Z., Li, J., Gao, X.J.: Heartbeat classification using projected and dynamic features of ECG signal. Biomed. Signal Process. 31, 165–173 (2017)

    Article  Google Scholar 

  55. Sharma, P., Ray, K.C.: Efficient methodology for electrocardiogram beat classification. IET Signal Process. 10, 825–832 (2016)

    Article  Google Scholar 

  56. Song, C.Y., Liu, K.B., Zhang, X., Chen, L.L., Xian, X.C.: An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals. I.E.E.E. Trans. Biomed. Eng. 63, 1532–1542 (2016)

    Google Scholar 

  57. Afkhami, R.G., Azarnia, G., Tinati, M.A.: Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recogn. Lett. 70, 45–51 (2016)

    Article  Google Scholar 

  58. Martis, R., Acharya, R., Ray, A.: Application of higher order cumulants to ECG signals for the cardiac health diagnosis. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1697–1700, Boston, MA (2011)

    Google Scholar 

  59. Kumar, M., Pachori, R.B., Acharya, U.R.: Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed. Signal Process. 31, 301–308 (2017)

    Article  Google Scholar 

  60. Hassan, A.R., Haque, M.A.: An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting. Neurocomputing. 235, 122–130 (2017)

    Article  Google Scholar 

  61. Chawla, M.: A comparative analysis of principal component and independent component techniques for electrocardiograms. Neural Comput. Appl. 18, 539–556 (2009)

    Article  Google Scholar 

  62. Kallas, M., Francis, C., Kanaan, L., Merheb, D., Honeine, P., Amoud, H.: Multi-class SVM classification combined with kernel PCA feature extraction of ECG signals. In: International Conference on Telecommunications (ICT), pp. 1–5 (2012)

    Google Scholar 

  63. Ubeyli, E.D.: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Expert Syst. Appl. 37, 1192–1199 (2010)

    Article  Google Scholar 

  64. Ergin, S., Uysal, A.K., Gunal, E.S., Gunal, S., Gulmezoglu, M.B.: ECG based biometric authentication using ensemble of features. In: 9th Iberian Conference on Information Systems and Technologies (CISTI). IEEE. pp. 1–6 (2014)

    Google Scholar 

  65. Vafaie, M.H., Ataei, M., Koofigar, H.R.: Heart diseases prediction based on ECG signals’ classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomed. Signal Process. 14, 291–296 (2014)

    Article  Google Scholar 

  66. Gunal, S., Gerek, O.N., Ece, D.G., Edizkan, R.: The search for optimal feature set in power quality event classification. Expert Syst. Appl. 36, 10266–10273 (2009)

    Article  Google Scholar 

  67. Kittler, J.: Feature set search algorithms. In: Pattern Recognition and Signal Processing, vol. 29. Springer, Netherlands (1978)

    Google Scholar 

  68. Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature-selection. Pattern Recogn. Lett. 15, 1119–1125 (1994)

    Article  Google Scholar 

  69. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  70. Chui, K.T., Tsang, K.F., Chi, H.R., Ling, B.W.K., Wu, C.K.: An accurate ECG-based transportation safety drowsiness detection scheme. IEEE Trans. Ind. Inf. 12, 1438–1452 (2016)

    Article  Google Scholar 

  71. Li, H.Q., Yuan, D.Y., Ma, X.D., Cui, D.Y., Cao, L.: Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 7, 41011 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35, 1817–1824 (2008)

    Article  Google Scholar 

  73. Nimbhorkar, N.B., Alaspurkar, S.J.: Probabilistic neural network in solving various pattern classification problems. Int. J. Comput. Sci. Netw. Secur. 14, 133–137 (2014)

    Google Scholar 

  74. Yu, S.-N., Chen, Y.-H.: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett. 28, 1142–1150 (2007)

    Article  Google Scholar 

  75. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA ICA and discrete wavelet transform. Biomed. Signal Process. 8, 437–448 (2013)

    Article  Google Scholar 

  76. Wang, J.S., Chiang, W.C., Hsu, Y.L., Yang, Y.T.C.: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing. 116, 38–45 (2013)

    Article  Google Scholar 

  77. Özbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2006)

    Article  PubMed  Google Scholar 

  78. Li, P.F., Wang, Y., He, J.C., Wang, L.H., Tian, Y., Zhou, T.S., Li, T.C., Li, J.S.: High-performance personalized heartbeat classification model for long-term ECG signal. I.E.E.E. Trans. Biomed. Eng. 64, 78–86 (2017)

    Google Scholar 

  79. Jewajinda, Y., Chongstitvatana, P.: A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification. Neural Comput. Appl. 22, 1609–1626 (2013)

    Article  Google Scholar 

  80. Osowski, S., Markiewicz, T., Hoai, L.T.: Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement. 41, 610–617 (2008)

    Article  Google Scholar 

  81. Liu, Q., Pitt, D., Wu, X.: On the prediction of claim duration for income protection insurance policyholders. Ann. Actuar. Sci. 8, 42–62 (2014)

    Article  Google Scholar 

  82. Chen, T.H., Mazomenos, E.B., Maharatna, K., Dasmahapatra, S., Niranjan, M.: Design of a low-power on-body ECG classifier for remote cardiovascular monitoring systems. IEEE J. Emerging Sel. Top. Circuits Syst. 3, 75–85 (2013)

    Article  Google Scholar 

  83. Wang, J.S., Lin, C.W., Yang, Y.T.C.: A k-nearest-neighbor classifier with heartrate variability feature-based transformation algorithm for driving stress recognition. Neurocomputing. 116, 136–143 (2013)

    Article  Google Scholar 

  84. Homaeinezhad, M.R., Atyabi, S.A., Tavakkoli, E., Toosi, H.N., Ghaffari, A., Ebrahimpour, R.: ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39, 2047–2058 (2012)

    Article  Google Scholar 

  85. Martis, R.J., Acharya, U.R., Prasad, H., Chua, C.K., Lim, C.M., Suri, J.S.: Application of higher order statistics for atrial arrhythmia classification. Biomed. Signal Process. 8, 888–900 (2013)

    Article  Google Scholar 

  86. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sornmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47, 838–848 (2000)

    Article  CAS  PubMed  Google Scholar 

  87. Özbay, Y., Tezel, G.: A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digital Signal Process. 20, 1040–1049 (2010)

    Article  Google Scholar 

  88. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  89. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Prog. Biomed. 127, 52–63 (2016)

    Article  Google Scholar 

  90. Raj, S., Ray, K.C.: ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Trans. Instrum. Meas. 66, 470–478 (2017)

    Article  Google Scholar 

  91. Seera, M., Lim, C.P., Liew, W.S., Lim, E., Loo, C.K.: Classification of electrocardiogram and auscultatory blood pressure signals using machine learning models. Expert Syst. Appl. 42, 3643–3652 (2015)

    Article  Google Scholar 

  92. Fayn, J.: A classification tree approach for cardiac ischemia detection using spatiotemporal information from three standard ECG leads. I.E.E.E. Trans. Biomed. Eng. 58, 95–102 (2011)

    Google Scholar 

  93. Martis, R.J., Acharya, U.R., Prasad, H., Chua, C.K., Lim, C.M.: Automated detection of atrial fibrillation using Bayesian paradigm. Knowl.-Based Syst. 54, 269–275 (2013)

    Article  Google Scholar 

  94. Lee, J., McManus, D.D., Bourrell, P., Sornmo, L., Chon, K.H.: Atrial flutter and atrial tachycardia detection using Bayesian approach with high resolution time-frequency spectrum from ECG recordings. Biomed. Signal Process. 8, 992–999 (2013)

    Article  Google Scholar 

  95. Singh, Y.N., Gupta, P.: Correlation-based classification of heartbeats for individual identification. Soft. Comput. 15, 449–460 (2011)

    Article  Google Scholar 

  96. Abo-Zahhad, M., Ahmed, S.M., Abbas, S.N.: Biometric authentication based on PCG and ECG signals: present status and future directions. Signal Image Video Process. 8, 739–751 (2014)

    Article  Google Scholar 

  97. Yang, H., Kan, C., Liu, G., Chen, Y.: Spatiotemporal differentiation of myocardial infarctions. IEEE Trans. Autom. Sci. Eng. 10, 938–947 (2013)

    Article  CAS  Google Scholar 

  98. Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1134–1142 (2015)

    Google Scholar 

  99. Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Penn, G.: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. pp. 4277–4280 (2012)

    Google Scholar 

  100. Association for the Advancement of Medical Instrumentation: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. ANSI/AAMI EC38 (1998)

    Google Scholar 

  101. Li, D., Zhang, J., Zhang, Q., Wei, X.: Classification of ECG signals based on 1D convolution neural network. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom). IEEE. pp. 1–6 (2017)

    Google Scholar 

  102. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2015)

    Article  PubMed  Google Scholar 

  103. Kachuee, M., Fazeli, S., Sarrafzadeh, M.: ECG heartbeat classification: a deep transferable representation. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI). IEEE. pp. 443–444 (2018)

    Google Scholar 

  104. Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 415, 190–198 (2017)

    Article  Google Scholar 

  105. Liu, W., Zhang, M., Zhang, Y., Liao, Y., Huang, Q., Chang, S., Wang, H., He, J.: Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J. Biomed. Health Inform. 22, 1434–1444 (2017)

    Article  PubMed  Google Scholar 

  106. Liu, W., Huang, Q., Chang, S., Wang, H., He, J.: Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomed. Signal Process. Control. 45, 22–32 (2018)

    Article  Google Scholar 

  107. Xia, Y., Wulan, N., Wang, K., Zhang, H.: Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 93, 84–92 (2018)

    Article  PubMed  Google Scholar 

  108. Clifford, G.D., Liu, C., Moody, B., Li-wei, H.L., Silva, I., Li, Q., Mark, R.G.: AF Classification from a short single lead ECG recording: the PhysioNet/Computing in Cardiology Challenge 2017. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  109. Andreotti, F., Carr, O., Pimentel, M.A., Mahdi, A., De Vos, M.: Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. In 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  110. Rubin, J., Parvaneh, S., Rahman, A., Conroy, B., Babaeizadeh, S.: Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation using short single-lead ECG recordings. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  111. Plesinger, F., Nejedly, P., Viscor, I., Halamek, J., Jurak, P.: Automatic detection of atrial fibrillation and other arrhythmias in holter ECG recordings using rhythm features and neural networks. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  112. Ghiasi, S., Abdollahpur, M., Madani, N., Kiani, K., Ghaffari, A.: Atrial fibrillation detection using feature based algorithm and deep convolutional neural network. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  113. Singh, S., Pandey, S.K., Pawar, U., Janghel, R.R.: Classification of ECG arrhythmia using recurrent neural networks. Proc. Comput. Sci. 132, 1290–1297 (2018)

    Article  Google Scholar 

  114. Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018)

    Article  PubMed  Google Scholar 

  115. Schwab, P., Scebba, G.C., Zhang, J., Delai, M., Karlen, W.: Beat by beat: classifying cardiac arrhythmias with recurrent neural networks. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  116. Teijeiro, T., García, C.A., Castro, D., Félix, P.: Arrhythmia classification from the abductive interpretation of short single-lead ECG records. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  117. Warrick, P., Homsi, M.N.: Cardiac arrhythmia detection from ECG combining convolutional and long short-term memory networks. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  118. Zihlmann, M., Perekrestenko, D., Tschannen, M.: Convolutional recurrent neural networks for electrocardiogram classification. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  119. Limam, M., Precioso, F.: Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network. In 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  120. Xiong, Z., Nash, M.P., Cheng, E., Fedorov, V.V., Stiles, M.K., Zhao, J.: ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol. Meas. 39, 094006 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  121. Shashikumar, S.P., Shah, A.J., Clifford, G.D., Nemati, S.: Detection of paroxysmal atrial fibrillation using attention-based bidirectional recurrent neural networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM. pp. 715–723 (2018)

    Google Scholar 

  122. Hong, S., Wu, M., Zhou, Y., Wang, Q., Shang, J., Li, H., Xie, J.: ENCASE: an ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)

    Google Scholar 

  123. Jiang, C., Song, S., Meng, M.Q.H.: Heartbeat classification system based on modified stacked denoising autoencoders and neural networks. In: 2017 IEEE International Conference on Information and Automation (ICIA). IEEE. pp. 511–516 (2017)

    Google Scholar 

  124. Yang, J., Bai, Y., Lin, F., Liu, M., Hou, Z., Liu, X.: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression. Int. J. Mach. Learn. Cybern. 9, 1733–1740 (2018)

    Article  CAS  Google Scholar 

  125. Rajan, D., Thiagarajan, J.J.: A generative modeling approach to limited channel ECG classification. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. pp. 2571–2574 (2018)

    Google Scholar 

  126. Yildirim, O., Baloglu, U.B., Tan, R.S., Ciaccio, E.J., Acharya, U.R.: A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput. Methods Prog. Biomed. 176, 121–133 (2019)

    Article  Google Scholar 

  127. He, R., Liu, Y., Wang, K., Zhao, N., Yuan, Y., Li, Q., Zhang, H.: Automatic cardiac arrhythmia classification using combination of deep residual network and bidirectional LSTM. IEEE Access. 7, 102119–102135 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runnan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, R., Liu, Y., Zhang, H. (2020). Study on Automatic Classification of Arrhythmias. In: Liu, C., Li, J. (eds) Feature Engineering and Computational Intelligence in ECG Monitoring. Springer, Singapore. https://doi.org/10.1007/978-981-15-3824-7_7

Download citation

Publish with us

Policies and ethics