Skip to main content

Secure and Energy-Efficient Key-Agreement Protocol for Multi-server Architecture

  • Conference paper
  • First Online:
Secure Knowledge Management In Artificial Intelligence Era (SKM 2019)

Abstract

Authentication schemes are practiced globally to verify the legitimacy of users and servers for the exchange of data in different facilities. Generally, the server verifies a user to provide resources for different purposes. But due to the large network system, the authentication process has become complex and therefore, time-to-time different authentication protocols have been proposed for the multi-server architecture. However, most of the protocols are vulnerable to various security attacks and their performance is not efficient. In this paper, we propose a secure and energy-efficient remote user authentication protocol for multi-server systems. The results show that the proposed protocol is comparatively \(\sim \)44% more efficient and needs \(\sim \)38% less communication cost. We also demonstrate that with only two-factor authentication, the proposed protocol is more secure from the earlier related authentication schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamport, L.: Password authentication with insecure communication. Commun. ACM 24(11), 770–772 (1981)

    Article  Google Scholar 

  2. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under the threat of power analysis attacks. IEEE Trans. Comput. 51(5), 541–552 (2002)

    Article  MathSciNet  Google Scholar 

  3. Madhusudhan, R., Mittal, R.C.: Dynamic ID-based remote user password authentication schemes using smart cards: a review. J. Netw. Comput. Appl. 35(4), 1235–1248 (2012)

    Article  Google Scholar 

  4. Limbasiya, T., Doshi, N.: An analytical study of biometric based remote user authentication schemes using smart cards. Comput. Electr. Eng. 59, 305–321 (2017)

    Article  Google Scholar 

  5. Li, L.H., Lin, L.C., Hwang, M.S.: A remote password authentication scheme for multiserver architecture using neural networks. IEEE Trans. Neural Netw. 12(6), 1498–1504 (2001)

    Article  Google Scholar 

  6. Lin, I.C., Hwang, M.S., Li, L.H.: A new remote user authentication scheme for multi-server architecture. Future Gener. Comput. Syst. 19(1), 13–22 (2003)

    Article  Google Scholar 

  7. Tsaur, W.J., Wu, C.C., Lee, W.B.: An enhanced user authentication scheme for multi-server internet services. Appl. Math. Comput. 170(1), 258–266 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Juang, W.S.: Efficient multi-server password authenticated key agreement using smart cards. IEEE Trans. Consum. Electron. 50(1), 251–255 (2004)

    Article  Google Scholar 

  9. Liao, Y.P., Wang, S.S.: A secure dynamic ID based remote user authentication scheme for multi-server environment. Comput. Stand. Interfaces 31(1), 24–29 (2009)

    Article  Google Scholar 

  10. Hsiang, H.C., Shih, W.K.: Improvement of the secure dynamic ID based remote user authentication scheme for multi-server environment. Comput. Stand. Interfaces 31(6), 1118–1123 (2009)

    Article  Google Scholar 

  11. Lee, C.C., Lou, D.C., Li, C.T., Hsu, C.W.: An extended chaotic-maps-based protocol with key agreement for multiserver environments. Nonlinear Dyn. 76(1), 853–866 (2014)

    Article  MathSciNet  Google Scholar 

  12. Banerjee, S., Dutta, M.P., Bhunia, C.T.: An improved smart card based anonymous multi-server remote user authentication scheme. Int. J. Smart Home 9(5), 11–22 (2015)

    Article  Google Scholar 

  13. Sun, Q., Moon, J., Choi, Y., Won, D.: An improved dynamic ID based remote user authentication scheme for multi-server environment. In: Huang, X., Xiang, Y., Li, K.-C. (eds.) GPC 2016. LNCS, vol. 9663, pp. 229–242. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39077-2_15

    Chapter  Google Scholar 

  14. Li, X., et al.: A novel chaotic maps-based user authentication and key agreement protocol for multi-server environments with provable security. Wirel. Pers. Commun. 89(2), 569–597 (2016)

    Article  Google Scholar 

  15. Jangirala, S., Mukhopadhyay, S., Das, A.K.: A Multi-server environment with secure and efficient remote user authentication scheme based on dynamic ID using smart cards. Wirel. Pers. Commun. 95(3), 2735–2767 (2017)

    Article  Google Scholar 

  16. Irshad, A., et al.: An enhanced and provably secure chaotic map-based authenticated key agreement in multi-server architecture. Arab. J. Sci. Eng. 43(2), 811–828 (2018)

    Article  Google Scholar 

  17. Ying, B., Nayak, A.: Lightweight remote user authentication protocol for multi-server 5G networks using self-certified public key cryptography. J. Netw. Comput. Appl. 131, 66–74 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trupil Limbasiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Limbasiya, T., Sahay, S.K. (2020). Secure and Energy-Efficient Key-Agreement Protocol for Multi-server Architecture. In: Sahay, S., Goel, N., Patil, V., Jadliwala, M. (eds) Secure Knowledge Management In Artificial Intelligence Era. SKM 2019. Communications in Computer and Information Science, vol 1186. Springer, Singapore. https://doi.org/10.1007/978-981-15-3817-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3817-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3816-2

  • Online ISBN: 978-981-15-3817-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics