Skip to main content

Air Pollution and Its Abatement

  • Chapter
  • First Online:
Environmental Management

Abstract

Air pollution, the unusual interference with the quality of atmosphere by way of addition of contaminants such as smoke, dust, smog, chemicals and vapors, unreasonably interferes with the comfortable enjoyment of life and conduct of business. Caused by many sources including both natural and man-made, air pollution results in a series of devastating impacts on man and his environment including the global environmental disasters like climate change, ozone depletion, and photochemical smog formation. Needing a proper and timely attention it requires an effective abatement strategy which controls the quality of air at surface level in residential, commercial, market, industrial, urban, and workplaces. And the effective abatement strategy includes the technical measures to control the gaseous and particulate pollutants, legislative approaches, substitution of raw materials and modification of the processes involved in the day-to-day activities of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, A., & Narain, S. (2003). Global warming in an unequal world a case of environmental colonialism. New Delhi: Centre for Science and Environment.

    Google Scholar 

  • Ahrens, C. D. (1991). Meteorology today: An introduction to weather, climate, and the environment. St. Paul, MN: West Publishing Company.

    Google Scholar 

  • Almethen, O. M., & Aldaithan, Z. S. (2017). The state of atmosphere stability and instability effects on air quality. The International Journal of Engineering and Science (IJES), 6(4), 74–79.

    Article  Google Scholar 

  • Biondo, S. J., & Marten, J. C. (1977). A history of flue gas desulphurization systems since 1850. Journal of the Air Pollution Control Association, 27(10), 948–961.

    Article  Google Scholar 

  • Bruce, N. G., Perez-Padilla, R., & Albalak, R. (2000). Indoor air pollution in developing countries: A major environmental and public health challenge. Bulletin of the World Health Organization, 78(9), 1078–1092.

    CAS  Google Scholar 

  • Cheremisinoff, N. P. (2002). Handbook of air pollution prevention and control. Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Choi, W., Winer, A. M., & Paulson, S. E. (2014). Factors controlling pollutant plume length downwind of major roadways in nocturnal surface inversions. Atmospheric Chemistry and Physics, 14, 6925–6940.

    Article  CAS  Google Scholar 

  • Colbeck, I., & Mackenzie, A. R. (1994). Air pollution by photochemical oxidants, air quality monographs (Vol. 1). Amsterdam: Elsevier.

    Google Scholar 

  • Critchfield, H. J. (1987). General climatology. New Delhi: Prentice Hall of India.

    Google Scholar 

  • De, A. K. (1994). Environmental chemistry. New Delhi: New Age International.

    Google Scholar 

  • Desai, M. A., Mehta, S., & Smith, K. R. (2004). Indoor smoke from solid fuels: Assessing the environmental burden of disease at national and local levels (Environmental burden of disease series 4). Geneva: World Health Organization.

    Google Scholar 

  • Dutton, J. A. (1995). Dynamics of the atmospheric motion. New York: Dover Publications.

    Google Scholar 

  • Fritz, B., Hoffmann, W. C., Lan, Y., Thomson, S., & Huang, Y. (2008). Low-level atmospheric temperature inversions: Characteristics and impacts on aerial applications. Agricultural Engineering International: The CIGR Journal, X.

    Google Scholar 

  • Garratt, J. R. (1992). The atmospheric boundary layer (p. 316). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Kaimal, J. C., & Finnigan, J. J. (1994). Atmospheric boundary layer flows (p. 287). North Carolina: Oxford University Press.

    Google Scholar 

  • Kankaria, A., Nongkynrih, B., & Gupta, S. K. (2014). Indoor air pollution in India: Implications on health and its control. Indian Journal of Community Medicine, 39(4), 203–208.

    Article  Google Scholar 

  • Kumar, S. (2017). Acid rain-the major cause of pollution: Its causes, effects. International Journal of Applied Chemistry, 13(1), 53–58.

    Google Scholar 

  • Miller, G. T., Jr. (2004). Environmental science. Cole, CA: Thomson Brroks.

    Google Scholar 

  • Muralikrishna, I. V., & Manickam, V. (2017a). Air pollution control technologies in environmental management (Science and engineering for industry) (pp. 337–397).

    Google Scholar 

  • Muralikrishna, I. V., & Manickam, V. (2017b). Air pollution control technologies. Environmental Management, 11(7), 2–8.

    Google Scholar 

  • Nevers, N. D. (2000). Air pollution control engineering (2nd ed.). New York: McGraw Hill.

    Google Scholar 

  • Patel, T. S., & Aryan, C. V. (1997). Indoor air quality: Problems and perspectives. In P. R. Shukla (Ed.), Energy strategies and greenhouse gas mitigation (1st ed., p. 72). New Delhi: Allied Publishers.

    Google Scholar 

  • Peavy, H. S., Rowe, D. R., & Tchobanoglous, G. (1985). Environmental engineering. New York: McGraw Hill.

    Google Scholar 

  • Rao, M. N., & Rao, H. V. N. (1996). Air pollution. New Delhi: McGraw Hill.

    Google Scholar 

  • Remsberg, E., & Woodbury, G. E. (1982). Stability of the surface layer and its relation to the dispersion of primary pollutant in St. Louis. Journal of Climate and Applied Meteorology, 22(2), 244–255.

    Article  Google Scholar 

  • Saravanan, N. P. (2004). Indoor air pollution: Danger at home. Resonance, 8, 6–11.

    Article  Google Scholar 

  • Schnelle, K. B., & Charles, A. B. (2002). Air pollution control technology handbook. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Sivasakthivel, T., & Reddy, K. K. S. K. (2011). Ozone layer depletion and its effects: A review. International Journal of Environmental Science and Development, 2(1), 30–37.

    Google Scholar 

  • Sorbjan, Z. (2001). An evaluation of local similarity on the top of the mixed layer based on large- eddy simulations. Boundary-Layer Meteorology, 101, 183–207.

    Article  Google Scholar 

  • Sorbjan, Z. (2003). In P. Zannetti (Ed.), Air-pollution meteorology: Theories, methodologies, computational techniques, and available databases and software (Fundamentals) (Vol. I). Fremont, CA: The EnviroComp Institute.

    Google Scholar 

  • Sorbjan, Z., & Uliasz, M. (1999). Large-eddy simulation of air pollution dispersion in the nocturnal cloud-topped atmospheric boundary layer. Boundary-Layer Meteorology, 91, 145–157.

    Article  Google Scholar 

  • Stern, A. C. (1976). Air pollution. New York: Academic Press.

    Google Scholar 

  • Stull, R. B. (1973). Inversion rise model based on penetrative convection. Journal of the Atmospheric Sciences, 30, 1092–1099.

    Article  Google Scholar 

  • Stull, R. B. (1988). An introduction to boundary layer meteorology (p. 666). Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Suetsugu, D., & Kogiso, T. (2013). Mantle plumes and hotspots. Module in Earth Systems and Environmental Sciences, 7, 5–8.

    Google Scholar 

  • Tripathi, A., & Ranjan, M. R. (2017). Role of plants in mitigation of air pollution. International Journal of Scientific Research Engineering & Technology (IJSRET), 6(11), 1087–1094.

    Google Scholar 

  • UNEP. (1994). In J. C. van der Leun, X. Tang, & M. Tevini (Eds.), Environmental effects of ozone depletion: 1994 assessment. Nairobi: United Nations Environment Programme.

    Google Scholar 

  • U.S. EPA. (1991). Handbook: Control technologies for hazardous air pollutants, EPA/625/6-91/014. Cincinnati, OH.

    Google Scholar 

  • U.S. Public Health Service. (1969). Air quality criteria for particulate matter (pp. 148–176). Washington, DC: Department of Health, Education and Welfare.

    Google Scholar 

  • World Health Organization. (1976). Manual on urban air quality management. Copenhagen: World Health Organization.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mushtaq, B., Bandh, S.A., Shafi, S. (2020). Air Pollution and Its Abatement. In: Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-3813-1_2

Download citation

Publish with us

Policies and ethics