Skip to main content

Behaviour of NiTi Based Smart Actuator for the Development of Planar Parallel Micro-Motion Stage

  • Conference paper
  • First Online:
Advances in Mechanical Engineering

Abstract

Recently, the application of smart materials such as shape memory alloys (SMAs) as actuators is gaining huge importance. SMA-based actuators are light in weight and provide higher work/mass. SMA undergoes simple actuation process such as Joule heating. Nitinol (NiTi) SMA can restore larger strains as compared to others. It can serve as active prismatic joint to provide linear motion in various robotic manipulators. The study correlates the deflection of (a) single NiTi spring and (b) series-connected NiTi springs with input parameters (time and current) to understand its behavioural complexity. The study revealed that the rate of NiTi spring contraction is dependent on time and current. To predict the actuation motion, several regression models were developed. This study defined the feasible current range for the actuation of NiTi spring based on contraction rate and precision. The contraction rate for single NiTi spring differs from the series connection of two NiTi springs which results a new set of polynomial regression model. The developed mathematical models can help control the smart actuation-based planar parallel robotic manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drossel WG, Kunze H, Bucht A, Weisheit L, Pagel K (2015) Smart—smart materials for smart applications. Procedia CIRP 36:211–216

    Article  Google Scholar 

  2. Miková L, Medvecká-Beňová S, Kelemen M, Trebuňa F, Virgala I (2015) Application of shape memory alloy (SMA) as actuator. METABK 54(1):169–172

    Google Scholar 

  3. Spaggiari A, Castagnetti D, Golinelli N, Dragoni E, Scirè Mammano G (2019) Smart materials: Properties, design and mechatronic applications. In: Proceedings of the institution of mechanical engineers, part l: journal of materials: design and applications 233(4):734–762

    Google Scholar 

  4. Singh Y, Mohan S (2017) Development of a planar 3PRP planar parallel manipulator using shape memory alloy spring based actuators. In: Proceedings of the advances in robotics (Proceeding AIR’17), 10

    Google Scholar 

  5. DesRoches R, McCormick J, Delemont M (2004) Cyclical properties of superelastic shape memory alloys. ASCE J Struct Eng 130(1):38–46

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge TEQIP-III under National Institute of Technology, Silchar, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deep Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, D., Singh, Y., Mukherjee, M. (2021). Behaviour of NiTi Based Smart Actuator for the Development of Planar Parallel Micro-Motion Stage. In: Kalamkar, V., Monkova, K. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-3639-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3639-7_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3638-0

  • Online ISBN: 978-981-15-3639-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics