Skip to main content

Composting: An Eco-friendly Technology for Sustainable Agriculture

  • Chapter
  • First Online:
  • 1010 Accesses

Abstract

The effective recovery of organic waste through composting has provided mankind with a multipurpose product (compost) which, apart from being used as biofertilizer and biopesticide, can find application in erosion management and restoration of hydrocarbon-polluted soil. Interestingly, composting technology could be indispensable in the actualization of sustainable agriculture due to its environmental friendliness, cost-effectiveness, and sustainability. However, for the essential concepts of sustainable agriculture—care, health, fairness, and ecology—to be realized, the composting process should be effectively managed. Therefore, in this chapter, we addressed the various methods of composting management, challenges, and application in agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi SA, Hussain N, Tauseef SM, Abbasi T (2018) A novel FLippable units vermireactor train system—FLUVTS—for rapidly vermicomposting paper waste to an organic fertilizer. J Clean Prod 198:917–930

    Article  Google Scholar 

  • Abdullah N, Chin NL (2010) Simplex-centroid mixture formulation for optimized composting of kitchen waste. Bioresour Technol 101:8205–8210

    Article  CAS  PubMed  Google Scholar 

  • Al-Bataina BB, Young TM, Ranieri E (2016) Effects of compost age on the release of nutrients. Int Soil Water Conserv Res 4(3):230–236

    Article  Google Scholar 

  • Ali U, Sajid N, Khalid A, Riaz L, Rabbani MM, Syed JH, Malik RN (2015) A review on vermicomposting of organic wastes. Environ Prog Sustain 34(4):1050–1062

    Article  CAS  Google Scholar 

  • Andersen JK, Boldrin A, Samuelsson J, Christensen TH, Scheutz C (2010) Quantification of greenhouse gas emissions from windrow composting of garden waste. J Environ Qual 39:713–724

    Article  CAS  PubMed  Google Scholar 

  • Arriaga H, Viguria M, López DM, Merino P (2017) Ammonia and greenhouse gases losses from mechanically turned cattle manure windrows: a regional composting network. J Environ Manag 203:557–563

    Article  CAS  Google Scholar 

  • Arrigoni JB, Paladino G, Garibaldi LA, Laos F (2018) Inside the small-scale composting of kitchen and garden wastes: thermal performance and stratification effect in vertical compost bins. Waste Manag 76:284–293

    Article  PubMed  Google Scholar 

  • Arthur E, Cornelis WM, Vermang J, De Rocker E (2011) Amending a loamy sand with three compost types: impact on soil quality. Soil Use Manag 27:116–123

    Article  Google Scholar 

  • Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JWC, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour Technol 168:214–221

    Article  CAS  PubMed  Google Scholar 

  • Bari Q, Koeing A (2012) Application of a simplified mathematical model to estimate the effect of forced aeration on composting in a closed system. Waste Manag 32(11):2037–2045

    Article  PubMed  Google Scholar 

  • Beck-Friis B, Pell M, Sonesson U, Jonsson H, Kirchmann H (2000) Formation and emission of N2O and CH4 from compost heaps of organic household waste. Environ Monit Assess 62:317–331

    Article  CAS  Google Scholar 

  • Bernard E, Larkin RP, Tavantzis SM, Erich MS, Alyokhin A, Sewell G, Lannan A, Gross S (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl Soil Ecol 52:29–41

    Article  Google Scholar 

  • Bhatia A, Madan S, Sahoo J, Ali M, Pathania R, Kazmi AA (2013) Diversity of bacterial isolates during full scale rotary drum composting. Waste Manag 33:1595–1601

    Article  CAS  PubMed  Google Scholar 

  • Bialobrzewski I, Miks-Krajnik M, Dach J, Markowski M, Czekała W, Głuchowska K (2015) Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms. Waste Manag 43:72–83

    Article  CAS  PubMed  Google Scholar 

  • Boldrin A, Andersen JK, Moller J, Christensen TH, Favoino E (2009) Composting and compost utilization: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):800–812

    Article  CAS  PubMed  Google Scholar 

  • Cempirkova R, Soch M (2007) The analysis of real microbiological risks for dissociated slurry. Agric Trop Subtrop 40:164–171

    Google Scholar 

  • Chan M, Selvam A, Wong JWC (2016) Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment. Bioresour Technol 200:838–844

    Article  CAS  PubMed  Google Scholar 

  • Chen L, De Haro MM, Moore A, Falen C (2011). The composting process: dairy compost production and use in Idaho CIS 1179. University of Idaho

    Google Scholar 

  • Chen R, Wang Y, Wang W, Wei S, Jing Z, Lin X (2015a) N2O emissions and nitrogen transformation during windrow composting of diary manure. J Environ Manag 160:121–127

    Article  CAS  Google Scholar 

  • Chen Z, Zhang S, Wen Q, Zheng J (2015b) Effect of aeration rate on composting of penicillin mycelial dreg. J Environ Sci 37:172–178

    Article  CAS  Google Scholar 

  • Chen M, Huang Y, Liu H, Xie S, Abbas F (2019) Impact of different nitrogen source on the compost quality and greenhouse gas emissions during composting of garden waste. Process Saf Environ 124:326–335

    Article  CAS  Google Scholar 

  • Chowdhury AKMMB, Michailides MK, Akratos CS, Tekerlekopoulou AG, Pavlou S, Vayenas DV (2014) Composting of three phase olive mill solid waste using different bulking agents. Int Biodeterior Biodegr 91:66–73

    Article  CAS  Google Scholar 

  • Claassen VP, Carey JL (2007) Comparison of slow-release nitrogen yield from organic soil amendments and chemical fertilizers and implications for regeneration of disturbed sites. Land Degrad Dev 132:119–132

    Article  Google Scholar 

  • Connolly J (2006) Economics of supermarket organics diversion. BioCycle 47(3):30–36

    Google Scholar 

  • De Silva S, Yatawara M (2017) Assessment of aeration procedures on windrow composting process efficiency: a case on municipal solid waste in Sri Lanka. Environ Nanotechnol Monit 8:169–174

    Article  Google Scholar 

  • Eden M, Martínez I, Keller T, Houot S (2019) Soil physical properties of a Luvisol developed on loess after 15 years of amendment with compost. Soil Tillage Res 191:207–215

    Article  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London

    Google Scholar 

  • Faucette B, Cardoso F, Mulbry W, Millner P (2013) Performance of compost filtration practice for green infrastructure stormwater applications. Water Environ Res 85(9):806–814

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Delgado JM, Prahauser B, Walter A, Insam H, Franke-Whittle IH (2015) Co-composting of biowaste and wood ash, influence on a microbially driven-process. Waste Manag 46:155–164

    Article  CAS  Google Scholar 

  • Fournel S, Godbout S, Ruel P, Fortin A, Duquette-Lozeau K, Létourneau V, Généreux M, Lemieux J, Potvin D, Côté C, Duchaine C, Pellerin D (2019) Production of recycled manure solids for use as bedding in Canadian dairy farms: II. Composting methods. J Dairy Sci 102(2):1847–1865

    Article  CAS  PubMed  Google Scholar 

  • Gao MC, Li B, Yu A, Liang FY, Yang LJ, Sun YX (2010) The effect of aeration rate on forced-aeration composting of chicken manure and sawdust. Bioresour Technol 101(6):1899–1903

    Article  CAS  PubMed  Google Scholar 

  • Garg P, Gupta A, Satya S (2006) Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Bioresour Technol 97(3):391–395

    Article  CAS  PubMed  Google Scholar 

  • Gould JC, Rossano MG, Lawrence LM, Burk SV, Ennis RB, Lyons ET (2013) The effects of windrow composting on the viability of Parascaris equorium eggs. Vet Parasitol 191(1–2):73–80

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Li G, Jiang T, Schuchardt F, Chen T, Zhao Y, Shen Y (2012) Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour Technol 112:171–178

    Article  CAS  PubMed  Google Scholar 

  • Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M, Badis A, Ladjama A (2014) Purification and biochemical characterization of a detergent stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J Biosci Bioeng 117(4):413–421

    Article  CAS  PubMed  Google Scholar 

  • Hachicha S, Sellami F, Cegarra J, Hachicha R, Drira N, Medhioub K, Ammar E (2009) Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-physico-chemical characterization of the processed organic matter. J Hazard Mater 162:402–409

    Article  CAS  PubMed  Google Scholar 

  • Haug RT (1993) The practical handbook of compost engineering. CRC, Boca Raton

    Google Scholar 

  • Hestmark KV, Fernández-Bayo JD, Harrold DR, Randall TE, Achmon Y, Stapleton JJ, Simmons CW, VanderGheynst JS (2019) Compost induces the accumulation of biopesticidal organic acids during soil biosolarization. Resour Conserv Recyl 143:27–35

    Article  Google Scholar 

  • Huang GF, Wong JWC, Wu QT, Nagar BB (2004) Effect of C/N on composting of pig manure with sawdust. Waste Manag 24:805–813

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Zhu Y, Li Z, Huang B, Luo N, Chun Liu C, Zeng G (2016) Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut 227:359

    Article  CAS  Google Scholar 

  • Igoni HA, Ayotamuno MJ, Eze CL, Ogaji SOT, Probert SD (2008) Design of anaerobic digesters for producing biogas from municipal solid-waste. Appl Energy 85(6):430–438

    Article  CAS  Google Scholar 

  • Imbeah M (1998) Composting piggery waste, a review. Bioresour Technol 63:197–203

    Article  CAS  Google Scholar 

  • Iqbal MK, Nadeem A, Sherazi F, Khan RA (2015) Optimization of process parameters for kitchen waste composting by response surface methodology. Int J Environ Sci Technol 12(5):1759–1768

    Article  CAS  Google Scholar 

  • Jiang J, Liu X, Huang Y, Huang H (2015) Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. Waste Manag 39:78–85

    Article  CAS  PubMed  Google Scholar 

  • Johari A, Alkali H, Hashim H, Ahmed SI, Mat R (2014) Municipal solid waste management and potential revenue from recycling in Malaysia. Mod Appl Sci 8:37–49

    Article  Google Scholar 

  • Jouquet P, Plumere T, Thu TD, Rumpel C, Duc TT, Orange D (2010) The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earthworms. Appl Soil Ecol 46(1):125–133

    Article  Google Scholar 

  • Kaiser J (1996) Modelling composting as a microbial ecosystem, a simulation approach. Ecol Model 91:25–37

    Article  CAS  Google Scholar 

  • Kalamdhad AS, Kazmi AA (2008) Mixed organic waste composting using rotary drum composter. Int J Environ Waste Manag 2:24–36

    Article  CAS  Google Scholar 

  • Kalamdhad AS, Kazmi AA (2009a) Effects of turning frequency on compost stability and some chemical characteristics in a rotary drum composter. Chemosphere 74(10):1327–1334

    Article  CAS  PubMed  Google Scholar 

  • Kalamdhad AS, Kazmi AA (2009b) Rotary drum composting of different organic waste mixtures. Waste Manag Res 27(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Kalemelawa F, Nishihara E, Endo T, Ahmad Z, Yeasmin R, Tenywa MM, Yamamoto S (2012) An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresour Technol 126:375–382

    Article  CAS  PubMed  Google Scholar 

  • Kasberger P (1995) Das dynamisch gesteuerte LESCHA-Verfahren (The dynamically controlled LESCHA-process; in German). In: Wiemer K, Kern M (eds) Abfallwirtschaft Neues aus Forschung und Praxis – HerstellerforumBioabfall – Verfahren der Kompostierung und anaeroben Abfallbehandlung im Vergleich. M.I.C. Baeza, Witzenhausen, pp 120–131

    Google Scholar 

  • Komakech AJ, Zurbrügg C, Miito GJ, Wanyama J, Vinneras B (2016) Environmental impact from vermicomposting of organic waste in Kampala, Uganda. J Environ Manag 181:395–402

    Article  CAS  Google Scholar 

  • Kong Z, Wang X, Liu Q, Li T, Chen X, Chai L, Liu D, Shen Q (2018) Evolution of various fractions during the windrow composting of chicken manure with rice chaff. J Environ Manag 207:366–377

    Article  CAS  Google Scholar 

  • Kugler R, Hofer H, Leisner R (1995) Das Wendelin-Tafelmieten-Kompostierungsverfahren (The Wendelin pile composting process; in German). In: Wiemer K, Kern M (eds) Abfallwirtschaft Neues aus Forschung undPraxis – Herstellerforum Bioabfall – Verfahren der Kompostierung und anaeroben Abfallbehandlung im Vergleich. M.I.C. Baeza, Witzenhausen, pp 13–23

    Google Scholar 

  • Kulikowska D (2016) Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Manag 49:196–203

    Article  CAS  PubMed  Google Scholar 

  • Lazcano C, Gomez-Brandon M, Domínguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Leton TG, Stentiford EI (1990) Control of aeration in static pile composting. Waste Manag Res 8(4):299–306

    Article  CAS  Google Scholar 

  • Li Y, Liu B, Zhang X, Gao M, Wang J (2015) Effects of Cu exposure on enzyme activities and selection for microbial tolerances during swine-manure composting. J Hazard Mater 283:512–518

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zeng W, Yang Y, Wang B, Li Z, Peng Y (2019) Oxygen mass transfer and post-denitrification in a modified rotating drum biological contactor. Biochem Eng J 144:48–56

    Article  CAS  Google Scholar 

  • Lim LY, Lee CT, Bong CPC, Lim JS, Klemes JJ (2019) Environmental and economic feasibility of an integrated community composting plant and organic farm in Malaysia. J Environ Manag 244:431–439

    Article  Google Scholar 

  • Luangwilai T, Sidhu HS, Nelson MI, Chen X (2011) Modelling the effects of moisture content in compost piles. In: CHEMECA 2011, Australian Chemical Engineering Conference Australia, Engineers Australia

    Google Scholar 

  • Luo W, Chen TB, Zheng GD, Gao D, Zhang YA, Gao W (2008) Effect of moisture adjustments on vertical temperature distribution during forced-aeration static-pile composting of sewage sludge. Resour Conserv Recycl 52(4):635–642

    Article  Google Scholar 

  • Makan A (2015) Windrow co-composting of natural casings waste with sheep manure and dead leaves. Waste Manag 42:17–22

    Article  CAS  PubMed  Google Scholar 

  • Makan AH, Assobhei O, Mountadar M (2013) Effects of initial moisture content on in-vessel composting under air pressure of organic fraction of municipal solid wastes in Morocco. Iran J Environ Health Sci Eng 10(1):3

    Article  Google Scholar 

  • Mayende L, Wilhelmi BS, Pletschke BI (2006) Cellulases (CMCases) and polyphenoloxidases from thermophilic Bacillus spp. isolated from compost. Soil Biol Biochem 38:2963–2966

    Article  CAS  Google Scholar 

  • Means NE, Starbuck CJ, Kremer RJ, Jett LW (2005) Effects of a food waste-based soil conditioner on soil properties and plant growth. Compost Sci Util 13(2):116–121

    Article  Google Scholar 

  • Michel FC Jr, Forney LJ, Huang AJ-F, Drew S, Czuprenski M, Lindeberg JD, Reddy CA (1996) Effects of turning frequency, leaves to grass mix ratio and windrow vs. pile configuration on the composting of yard trimmings. Compost Sci Util 4:26–43

    Article  Google Scholar 

  • Milinković M, Lalević B, Jovičić-Petrović J, Golubović-Ćurguz V, Kljujev I, Raičević V (2019) Biopotential of compost and compost products derived from horticultural waste – effect on plant growth and plant pathogens’ suppression. Process Saf Environ 121:299–306

    Article  CAS  Google Scholar 

  • Miller L, Angiel J (2009) Municipal yard trimmings compo sting benefit cost analysis. BioCycle 50(7):21–24

    Google Scholar 

  • Miyatake F, Iwabuchi K (2005) Effect of high compost temperature on enzymatic activity and species diversity of culturable bacteria in cattle manure compost. Bioresour Technol 96(16):1821–1825

    Article  CAS  PubMed  Google Scholar 

  • Mohammad M, Alam M, Kabbashi NA, Ahsan A (2012) Effective composting of oil palm industrial waste by filamentous fungi, a review. Resour Conserv Recycl 58:69–78

    Article  Google Scholar 

  • Mohee R, Boojhawon A, Sewhoo B, Rungasamy S, Somaroo GD, Mudhoo A (2015) Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes. J Environ Manag 159:209–217

    Article  CAS  Google Scholar 

  • Mtaita TA (2003) Food. In: Hazeltine B, Bull C (eds) Field guide to appropriate technology. Academic, San Diego, pp 277–480

    Chapter  Google Scholar 

  • Mulec AO, Mihelic R, Walochnik J, Bulc TG (2016) Composting of the solid fraction of blackwater from a separation system with vacuum toilets – effects on the process and quality. J Clean Prod 112:4683–4690

    Article  CAS  Google Scholar 

  • Mupambwa HA, Mnkeni PNS (2018) Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review. Environ Sci Pollut Res Int 25(11):10577–10595

    Article  PubMed  Google Scholar 

  • Mupambwa HA, Ravindran B, Mnkeni PNS (2016) Potential of effective micro-organisms and Eisenia fetida in enhancing vermi-degradation and nutrient release of fly ash incorporated into cow dung-paper waste mixture. Waste Manag 48:165–173

    Article  CAS  PubMed  Google Scholar 

  • Nakasaki K, Tran LTH, Idemoto Y, Abe M, Rollon AP (2009) Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge. Bioresour Technol 100:676–682

    Article  CAS  PubMed  Google Scholar 

  • Nakasaki K, Hirai H, Mimoto H, Quyen TNM, Koyama M, Takeda K (2019) Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting. Sci Total Environ 671:1237–1244

    Article  CAS  Google Scholar 

  • Nasini L, De Luca G, Ricci A, Ortolani F, Caselli A, Massaccesi L, Regni L, Gigliotti G, Proietti P (2016) Gas emissions during olive mill waste composting under static pile conditions. Int Biodeterior Biodegrad 107:70–76

    Article  CAS  Google Scholar 

  • Niccolo P, Eugenio C (2013) The effects of heavy metals, ammonia and electrical conductivity in compost derived from swine solid fraction on seed germination and root elongation of Lepidium sativum L. Poster presented at the “15th international conference of the network of recycling of agricultural, municipal and industrial residues in agriculture (RAMIRAN)”, June 2013

    Google Scholar 

  • Nielsen KM (2019) Organic farming. Encyclopedia of ecology, 2nd edn. Reference module in earth systems and environmental sciences, vol 4, pp 550–558

    Google Scholar 

  • Onwosi CO, Igbokwe VC, Odimba JN, Eke IE, Nwankwoala MO, Iroh IN, Ezeogu LI (2017) Composting technology in waste stabilization: on the methods, challenges and future prospects. J Environ Manag 190:140–157

    Article  CAS  Google Scholar 

  • Oudart D, Robin P, Paillat JM, Paul E (2015) Modelling nitrogen and carbon interactions in composting of animal manure in naturally aerated piles. Waste Manag 46:588–598

    Article  CAS  PubMed  Google Scholar 

  • Pace MG (1995) The composting process. Utah State University Cooperative Extension, Utah, pp 1–2

    Google Scholar 

  • Pandey PK, Cao W, Biswas S, Vaddella V (2016) A new closed loop heating system for composting of green and food wastes. J Clean Prod 133:1252–1259

    Article  CAS  Google Scholar 

  • Paradelo R, Moldes AB, Barral MT (2013) Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes. J Environ Manag 116:18–26

    Article  CAS  Google Scholar 

  • Paradelo R, Eden M, Martinez I, Keller T, Houot S (2019) Soil physical properties of a Luvisol developed on loess after 15 years of amendment with compost. Soil Tillage Res 191:207–215

    Article  Google Scholar 

  • Pepe O, Ventorino V, Blaiotta G (2013) Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application. Waste Manag 33:1616–1625

    Article  CAS  PubMed  Google Scholar 

  • Pergola M, Persiani A, Palese AM, Di Meo V, Pastore V, D’Adamo C, Celano G (2018) Composting: the way for a sustainable agriculture. Appl Soil Ecol 123:744–750

    Article  Google Scholar 

  • Petric I, Selimbasic V (2008) Development and validation of mathematical model for aerobic composting process. Chem Eng J 139(2):304–317

    Article  CAS  Google Scholar 

  • Petric I, Helic A, Avdic EA (2012) Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure. Bioresour Technol 117:107–116

    Article  CAS  PubMed  Google Scholar 

  • Petric I, Avdihodzic E, Ibric N (2015) Numerical simulation of composting process for mixture of organic fraction of municipal solid waste and poultry manure. Ecol Eng 75:242–249

    Article  Google Scholar 

  • Pollan M (2006) The omnivore’s dilemma: a natural history off our meals. Penguin Group, New York

    Google Scholar 

  • Powers LE, McSorley R (2000) Ecological principles of agriculture. Thompson Delmar Learning, Albany

    Google Scholar 

  • Ramnarain YI, Adil Ansari AA, Ori L (2019) Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int J Recyl Org Waste Agric 8(1):23–33

    Article  Google Scholar 

  • Raut MP, William SMPP, Bhattacharyya JK, Chakrabarti T, Devotta S (2008) Microbial dynamics and enzyme activities during rapid composting of municipal solid waste – a compost maturity analysis perspective. Bioresour Technol 99:6512–6519

    Article  CAS  PubMed  Google Scholar 

  • Rawoteea SA, Mudhoo A, Kumar S (2017) Co-composting of vegetable wastes and carton: effect of carton composition and parameter variations. Bioresour Technol 227:171–178

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Zeng G, Tang L, Wang J, Wan J, Wang J, Deng Y, Liu Y, Peng B (2018) The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. Waste Manag 72:138–149

    Article  CAS  PubMed  Google Scholar 

  • Rich N, Bharti A (2015) Assessment of different types of in-vessel composters and its effect on stabilization of MSW compost. Int Res J Eng Technol 2(3):1–6

    Google Scholar 

  • Rodríguez L, Cerrillo MI, García-Albiach V, Villaseñor J (2012) Domestic sewage sludge composting in a rotary drum reactor: optimizing the thermophilic stage. J Environ Manag 112:284–291

    Article  CAS  Google Scholar 

  • Ros M, Klammer S, Knapp B, Alchberger K, Insam H (2006) Long term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag 22:209–218

    Article  Google Scholar 

  • Sanasam SD, Talukdar NC (2017) Quality compost production from municipality biowaste in mix with rice straw, cow dung, and earthworm Eisenia Fetida. Compost Sci Util 25:141–151

    Article  CAS  Google Scholar 

  • Schmitz T, Meier-Stolle G (1995) Das Biotin-UndeKompoflex-verfahren (The Biofix and Kompoflex process; in German). In: Wiemer K, Kern M (eds) Abfallwirtschaft Neuesaus Forschung and Praxis-Herstellerforum Bioafall-Verfahren der kompostierung und anaeroben Abfallbehandlung in vergleich. M.I.C. Baeza, Witzenhausen, pp 183–192

    Google Scholar 

  • Sharma K, Garg VK (2018) Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour Technol 250:708–715

    Article  CAS  PubMed  Google Scholar 

  • Shuman L, Dudka S, Das K (2001) Zinc forms and plant availability in a compost amended soil. Water Air Soil Pollut 128(1/2):1–11

    Article  CAS  Google Scholar 

  • Singh J (2018) Role of earthworm in sustainable agriculture. In: Sustainable food systems from agriculture to industry. Improving production and processing. Elsevier, Amsterdam, pp 83–122

    Google Scholar 

  • Solaiman ZM, Yang H, Archdeacon D, Tippet O, Tibi M, Whiteley AS (2019) Humus-rich compost increases lettuce growth, nutrient uptake, mycorrhizal colonisation, and soil fertility. Pedosphere 29(2):170–179

    Article  Google Scholar 

  • Soobhany N (2018) Remediation potential of metalliferous soil by using extracts of composts and vermicomposts from municipal solid waste. Process Saf Environ 118:285–295

    Article  CAS  Google Scholar 

  • Sudharsan VV, Kalamdhad AS (2015) Evolution of chemical and biological characterization during thermophilic composting of vegetable waste using rotary drum composter. Int J Environ Sci Technol 12:2015–2024

    Article  CAS  Google Scholar 

  • Sundberg C, Jonsson H (2008) Higher pH and faster decomposition in biowaste composting by increased aeration. Waste Manag 28:518–526

    Article  CAS  PubMed  Google Scholar 

  • Sundberg C, Smars S, Jonsson H (2004) Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour Technol 95:145–150

    Article  CAS  PubMed  Google Scholar 

  • Sundberg C, Yu D, Franke-Whittle I, Kauppe S, Smars S, Insam H, Romantschuk M, Jonsson H (2013) Effect of pH and microbial composition on odour in food waste composting. Waste Manag 33:204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traversa A, Loffredo E, Gattullo CE, Senesi N (2010) Water-extractable organic matter of different composts, a comparative study of properties and allelochemical effects on horticultural plants. Geoderma 156:287–292

    Article  CAS  Google Scholar 

  • Tripathi G, Bhardwaj P (2004) Decomposition of kitchen waste amended with cow manure using an epigeic species (Eisenia fetida) and an anecic species (Lampito mauritii). Bioresour Technol 92(2):215–218

    Article  CAS  PubMed  Google Scholar 

  • Turan NG (2008) The effects of natural zeolite on salinity level of poultry litter compost. Bioresour Technol 99:2097–2101

    Article  CAS  PubMed  Google Scholar 

  • University of Colorado Recycling Services (2002) Colorado institutional food waste composting guide. Retrieved from http://recycling.colorado.edu/files/1423d363613bc4311dcaS076ce69t71edec22b1b.pdf

  • USDA (1997) Estimating and addressing America’s food losses. Retrieved from http://www.ers.usda.gov/Publications/FoodReview/JanI997/Jan97a.pdf

  • USNPS (2009) Composting. Retrieved from http://www.nps.gov/climate friendly parks/Mitigation/Composting.html

  • Vuorinen AH, Saharinen MH (1997) Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agric Ecosyst Environ 66:19–29

    Article  Google Scholar 

  • Wang X, Selvam A, Wong JWC (2016a) Influence of lime on struvite formation and nitrogen conservation during food waste composting. Bioresour Technol 217:227–232

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Pang L, Liu X, Wang Y, Zhou K, Luo F (2016b) Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor. Bioresour Technol 206:164–172

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Sheng H, Gu C, Marc R-G, Wang Y, Bian Y, Jiang X, Wang F (2019) Biochar combined with compost to reduce the mobility, bioavailability and plant uptake of 2,2′,4,4′-tetrabrominated diphenyl ether in soil. J Hazard Mater 374:341–348

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Li G, Shi H, Wang Y (2015) Effects of phosphor-gypsum and super phosphate on compost maturity and gaseous emissions during kitchen waste composting. Waste Manag 36:70–76

    Article  CAS  PubMed  Google Scholar 

  • Zachaus D (1995) Kompostierung (composting; in German). In: Thome-Kozmiensky KJ (ed) Biologische Abfallbehandlung. EF-Verlag fur Energie- und Umwelttechnik GmbH, Berlin, pp 215–353

    Google Scholar 

  • Zhang L, Sun X (2014) Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour Technol 171:274–284

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Sun X (2016a) Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresour Technol 218:335–343

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Sun X (2016b) Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag 48:115–126

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li C, Li G, Zang B, Yang Q (2012) Effect of spent air reusing (SAR) on maturity and greenhouse gas emissions during municipal solid waste MSW composting with different pile height. Procedia Environ Sci 16:59–69

    Article  CAS  Google Scholar 

  • Zhao X, Li B, Ni J, Xie D (2016) Effect of four crop straws on transformation of organic matter during sewage sludge composting. J Integr Agric 15:232–240

    Article  CAS  Google Scholar 

  • Zhi-Wei S, Tao S, Wen-Jing D, Jing W (2019) Investigation of rice straw and kitchen waste degradation through vermicomposting. J Environ Manag 243:269–272

    Article  CAS  Google Scholar 

  • Zhu-Barker X, Bailey SK, Paw UKT, Burger M, Horwath WR (2017) Greenhouse gas emissions from green waste composting windrow. Waste Manag 59:70–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwudi O. Onwosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onwosi, C.O., Ndukwe, J.K., Aliyu, G.O., Chukwu, K.O., Ezugworie, F.N., Igbokwe, V.C. (2020). Composting: An Eco-friendly Technology for Sustainable Agriculture. In: Bauddh, K., Kumar, S., Singh, R., Korstad, J. (eds) Ecological and Practical Applications for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-3372-3_9

Download citation

Publish with us

Policies and ethics