Skip to main content

Ecological Consequences of Genetically Modified Crops on Soil Biodiversity

  • Chapter
  • First Online:

Abstract

Uncontrolled population raised an important concern of food security in front of the entire world. To increase the global food productivity, numerous technological interventions have been done, and development of genetically modified organisms (GMOs) especially crops was considered as a novel approach. Genetically modified crops (GMCs) are designed in such a way to fight against both biotic and abiotic stresses and to give a better yield than conventional crops. Several GMCs have been adopted in many countries of the world and many more are under trial. Like many other technologies, use of GMCs in the natural fields is found to have some ecological complications like their impacts on non-target organisms, loss of biodiversity, flow of transgene, etc. In this chapter, efforts have been done to explore the concept and role of GMCs in agriculture. Further, adverse impacts of GMCs on the environment, soil biodiversity, and non-target plants and animals have also been discussed thoroughly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Actis LA, Tolmasky ME, Crosa JH (1999) Bacterial plasmids: replication of extra-chromosomal genetic elements encoding resistance to antimicrobial compounds. Front Biosci 4:43–62

    Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    PubMed  PubMed Central  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agro-ecosystems. Agric Ecosyst Environ 74:19–31

    Google Scholar 

  • Ammann K (2005) Effects of biotechnology on biodiversity: herbicide tolerant and insect resistant GM crops. Trends Biotechnol 23(8):388–394

    CAS  PubMed  Google Scholar 

  • Batista R, Oliveira MM (2009) Facts and fiction of genetically engineered food. Trends Biotechnol 27(5):277–286

    CAS  PubMed  Google Scholar 

  • Benjamin A (2008) Pesticides: Germany bans chemicals linked to honeybee devastation. The Guardian

    Google Scholar 

  • Bernstein JA, Bernstein IL, Bucchini L, Goldman LR, Hamilton RG, Lehrer S, Rubin C, Sampson HA (2003) Clinical and laboratory investigation of allergy to genetically modified foods. Environ Health Perspect 111(8):1114–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan M, Mayer K, White O, Eisen JA, Preuss D, Bureau T, Salzberg SL, Mewes HW (2001) Sequence and analysis of the Arabidopsis genome. Curr Opin Plant Biol 4:105–110

    CAS  PubMed  Google Scholar 

  • Bohme H, Aulrich K, Daenicke R, Flachowsky G (2001) Genetically modified feeds in animal nutrition. 2nd communication: glufosinate tolerant sugar beets (roots and silage) and maize grains for ruminants and pigs. Arch Tierernahr 54(3):197–207

    CAS  PubMed  Google Scholar 

  • Broll H, Zagon J, Butschke A, Leffka A, Spiegelberg A (2005) The fate of DNA of transgenic inulin synthesizing potatoes in pigs. J Anim Feed Sci 14(Suppl. 1):337–340

    Google Scholar 

  • Brown PB, Wilson KA, Jonker Y, Nickson TE (2003) Glyphosate tolerant canola meal is equivalent to the parental line in diets fed to rainbow trout. J Agric Food Chem 51(15):4268–4272

    CAS  PubMed  Google Scholar 

  • Calsamiglia S, Hernandez B, Hartnell GF, Phipps R (2007) Effects of corn silage derived from a genetically modified variety containing two transgenes on feed intake, milk production, and composition, and the absence of detectable transgenic deoxyribonucleic acid in milk in Holstein dairy cows. J Dairy Sci 90(10):4718–4723

    CAS  PubMed  Google Scholar 

  • Chainark P, Satoh S, Hirono SI, Aoki T, Endo M (2008) Availability of genetically modified feed ingredient: investigations of ingested foreign DNA in rainbow trout Oncorhynchus mykiss. Fish Sci 74(2):380–390

    CAS  Google Scholar 

  • Chandler SF, Stevenson TW (2014) Gene flow and risk assessment in genetically modified crops. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants, vol 1. Springer, New York, pp 247–265

    Google Scholar 

  • Clark EA (2005) Environmental risks of genetic engineering. Euphytica 148:47–60

    Google Scholar 

  • D’Agnolo G (2005) GMO: human health risk assessment. Vet Res Commun 29(Suppl. 2):7–11

    PubMed  Google Scholar 

  • Davies J, Honegger JL, Tencalla FG, Meregalli G, Brain P, Newman JR, Pitchford HF (2003) Herbicide risk assessment for non-target aquatic plants: sulfosulfuron—a case study. Pest Manag Sci 59(2):231–237

    CAS  PubMed  Google Scholar 

  • Dawkar VV, Chougale AD, Barvkar V, Tanpure RS, Giri AP (2018) Genetically engineered crops: opportunities, constraints, and food security at a glance of human health, environmental impact, and food quality. In: Holban AM, Grumezescu AM (eds) Genetically engineered foods. Academic, New York, pp 311–334

    Google Scholar 

  • de Santis B, Stockhofe, Wal JM, Weesendorp E, Lalles JP, Dijk JV, Kok E, De Giacomo M, Einspanier R, Onori R, Brera C, Bikker P, Meulen JVD, Kleter G (2018) Case studies on genetically modified organisms (GMOs): Potential risk scenarios and associated health indicators. Food Chem Toxicol 117:36–65

    Google Scholar 

  • de Vendomois JS, Roullier F, Cellier D, Seralini GE (2009) A comparison of the effects of three GM corn varieties on mammalian health. Int J Biol Sci 5:706–726

    PubMed  PubMed Central  Google Scholar 

  • de Vos CJ, Swanenburg M (2018) Health effects of feeding genetically modified (GM) crops to livestock animals: a review. Food Chem Toxicol 117:3–12

    PubMed  Google Scholar 

  • Domingo JL (2007) Toxicity studies of genetically modified plants: a review of the published literature. Crit Rev Food Sci Nutr 47(8):721–733

    CAS  PubMed  Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33(3):806–815

    CAS  PubMed  Google Scholar 

  • EFSA Panel on Genetically Modified Organisms (GMO) (2008) Guidance on the environmental risk assessment of genetically modified plants. EFSA J 8:1879–1990

    Google Scholar 

  • Folmer J, Grant RJ, Milton CT, Beck J (2002) Utilization of Bt corn residues by grazing beef steers and Bt corn silage and grain by growing beef cattle and lactating dairy cows. J Anim Sci 80(5):1352–1361

    CAS  PubMed  Google Scholar 

  • Gealy DR, Mitten DH, Rutger JN (2003) Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management. Weed Technol 17:627–645

    Google Scholar 

  • Giddings G (2000) Modelling the spread of pollen from Lolium perenne. The implications for the release of wind-pollinated transgenics. Theor Appl Genet 100:971–974

    Google Scholar 

  • Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Riv Biol 98(3):393–417

    PubMed  Google Scholar 

  • Glencross BJ, Curnow W, Hawkins GW, Kissil M, Peterson D (2003) Evaluation of the feed value of a transgenic strain of the narrow-leaf lupin (Lupinus angustifolius) in the diet of the marine fish, Pagrus auratus. Aquac Nutr 9(3):197–206

    CAS  Google Scholar 

  • Goujon A (2018) Human population growth. Encyclopedia of Ecology. March 2018

    Google Scholar 

  • Groot AT, Dicke M (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31:387–406

    CAS  PubMed  Google Scholar 

  • Gustafson DI, Horak MJ, Rempel CB, Metz SG, Gigax DR et al (2005) An empirical model for pollen-mediated gene flow in wheat. Crop Sci 45:1286–1294

    Google Scholar 

  • Halver JE, Hardy RW (2002) Fish nutrition, 3rd ed. Academic, San Diego, CA. 824 p

    Google Scholar 

  • Herman RA, Zhuang M, Storer NP, Cnudde F, Delaney B (2019) Risk-Only assessment of genetically engineered crops is risky. Trends Plant Sci 24:158–168

    Google Scholar 

  • Hilbeck A (2002) Transgenic host plant resistance and nontarget effects. In Letourneau DK, Burrows BE (eds) Genetically engineered organisms. Assessing environmental and human health effects. CRC, Boca Raton, FL, pp 167–185. 438p

    Google Scholar 

  • Hyun Y, Bressner GE, Ellis M, Lewis AJ, Fischer R (2004) Performance of growing-finishing pigs fed diets containing. Roundup ready corn (event nk603), a non-transgenic genetically similar corn, or conventional corn lines. J Anim Sci 82:571–580

    CAS  PubMed  Google Scholar 

  • International Service for the Acquisition of Agri-biotech Applications (ISAAA). Brief 53-2017

    Google Scholar 

  • Irtwange S (2006) Application of biological control agents in pre- and post-harvest operations. Agric Eng Int CIGR E J 8:1–10

    Google Scholar 

  • Ismail K, Azhar TNT, Yong CY, Aslan AS, Omar WZ, Majid I, Ajagbe AM (2012) Problems on commercialization of genetically modified crops in Malaysia. Procedia Soc Behav Sci 40:353–357

    Google Scholar 

  • Jialin Z, Juan H, Jianqun N, Qingwen Z, Xiaoxia L (2013) Influence of wind direction on pollen-mediated gene flow in transgenic insect-resistant cotton. Acta Ecologica Sinica 33:6803–6812

    Google Scholar 

  • Johannessen MM, Andersen BA, Jorgensen RB (2006) Competition affects gene flow from oil seed rape (♀) to Brassica rapa (♂). Heredity 96:360–367

    CAS  PubMed  Google Scholar 

  • Key S, Ma JK-C, Drake PMW (2008) Genetically modified plants and human health. J R Soc Med 101(6):290–298

    PubMed  PubMed Central  Google Scholar 

  • Kramkowska M, Grzelak T, Czyzewska K (2013) Benefits and risks associated with genetically modified food products. Ann Agric Environ Med 20:413–419

    CAS  PubMed  Google Scholar 

  • Ladics GS, Cressman RF, Herouet-Guicheney C, Herman RA, Privalle L, Song P, Ward JM, Mcclain S (2011) Bioinformatics and the allergy assessment of agricultural biotechnology products: industry practices and recommendations. Regul Toxicol Pharmacol 60:46–53

    PubMed  Google Scholar 

  • Lazebnik J, Arpaia S, Baldacchino F, Banzato P, Moliterni S, Vossen JH, Zande EM, Loon JJA (2017) Effects of a genetically modified potato on a non-target aphid are outweighed by cultivar differences. J Pest Sci 90:855–864

    Google Scholar 

  • Lu B, Snow AA (2005) Gene Flow from genetically modified rice and its environmental consequences. BioScience 55(8):669–678

    Google Scholar 

  • Lu B, Yang C (2009) Gene flow from genetically modified rice to its wild relatives: assessing potential ecological consequences. Biotechnol Adv 27:1083–1091

    CAS  Google Scholar 

  • Lusser M, Davies HV (2013) Comparative regulatory approaches for groups of new plant breeding techniques. New Biotechnol 30(5):437–446

    CAS  Google Scholar 

  • Lutz B, Wiedemann S, Einspanier R, Mayer J, Albrecht C (2005) Degradation of Cry1Ab protein from genetically modified maize in the bovine gastrointestinal tract. J Agric Food Chem 53:1453–1456

    CAS  PubMed  Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fert Soils 40:363–385

    CAS  Google Scholar 

  • Macfadyen S, Davies AP, Zalucki MP (2015) Assessing the impact of arthropod natural enemies on crop pests at the field scale. Insect Sci 22:20–34

    PubMed  Google Scholar 

  • Martinez-Ghersa MA, Worster CA, Radosevich SR (2003) Concerns a weed scientist might have about herbicide-tolerant crops: a revisitation. Weed Technol 17:202–210

    Google Scholar 

  • Mejia L, Jacobs CM, Utterback PL, Parsons CM, Rice D (2010) Evaluation of the nutritional equivalency of soybean meal with the genetically modified trait DP-305423-I when fed to laying hens. Poult Sci 89:2634–2639

    CAS  PubMed  Google Scholar 

  • Mohanta RK, Singhal KK, Tyagi AK, Rajput YS, Prasad S (2010) Nutritional evaluation of transgenic cottonseed in the ration of lactating dairy cows. Trop Animal Health Prod 42:431–438

    Google Scholar 

  • Moon HS, Eda S, Saxton AM, Ow DW, Stewart CN (2011) An efficient and rapid transgenic pollen screening and detection method using flow cytometry. Biotechnol J 6:118–123

    CAS  PubMed  Google Scholar 

  • Ndakidemi B, Mtei K, Ndakidemi PA (2016) The potential of common beneficial insects and strategies for maintaining them in bean fields of Sub Saharan Africa. Am J Plant Sci 7:425–436

    CAS  Google Scholar 

  • Neher DA (1999) Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agrofor Syst 45:159–185

    Google Scholar 

  • Nicholls CI, Altieri MA (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems, a review. Agron Sustain Dev 33:257–274

    Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on non-target organisms. Annu Rev Entomol 50:271–292

    PubMed  Google Scholar 

  • Onkin SS, Velez JC, Totten AK, Stanisiewski EP, Hartnell GF (2003) Effects of feeding silage and grain from glycophosphate-tolerant or insect-protected corn-hybrids on feed intake, ruminal digestion, and milk composition in dairy cattle. J Dairy Sci 86:1780–1788

    Google Scholar 

  • Paul MJ, Nuccio ML, Basu SS (2018) Are GM crops for yield and resilience possible? Trends Plant Sci 23(1):10–16

    CAS  PubMed  Google Scholar 

  • Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8:3113

    PubMed  PubMed Central  Google Scholar 

  • Phelinas P, Choumert J (2017) Is GM soybean cultivation in Argentina sustainable? World Dev 99:452–462

    Google Scholar 

  • Pu DQ et al (2014) Flower-visiting insects and their potential impact on transgene flow in rice. J Appl Ecol 51:1357–1365

    Google Scholar 

  • Ramesh T et al (2019) Soil organic carbon dynamics: impact of land use changes and management practices: a review. Adv Agron 156:1–107

    Google Scholar 

  • Rieben S, Kalinina O, Schmid B, Zeller SL (2011) Gene flow in genetically modified wheat. PLoS One 6(12). https://doi.org/10.1371/journal.pone.0029730

  • Romeis J, Meissle M, Naranjo SE, Li Y, Bigler F (2014) The end of a myth—Bt(Cry1Ab) maize does not harm green lacewings. Front Plant Sci 5:1–10

    Google Scholar 

  • Sanden M, Berntssen MH, Krogdahl A, Herme GI, McKellep AM (2005) An examination of the intestinal tract of Atlantic salmon. Salmo salar L., parr fed different varieties of soy and maize. J Fish Dis 28:317–330

    CAS  PubMed  Google Scholar 

  • Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol 33:35–39

    CAS  PubMed  Google Scholar 

  • Saxena D, Stotzky G (2001) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem 33:1225–1230

    CAS  Google Scholar 

  • Saxena D, Flores S, Stoztky G (2002) Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biol Biochem 34:133–137

    CAS  Google Scholar 

  • Scheideler SE, Hileman RE, Weber T, Robeson L, Hartnell GF (2008) The in vivo digestive fate of the Cry3Bb1 protein in laying hens fed diets containing MON 863 corn. Poult Sci 87:1089–1097

    CAS  PubMed  Google Scholar 

  • Schuler TH (2000) The impact of insect resistant GM crops on populations of natural enemies. Antenna 24:59–65

    Google Scholar 

  • Seralini GE, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M, Hennequin D, de Vendomois JS (2014) Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Environ Sci Eur 26(14):1–17

    Google Scholar 

  • Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Phil Trans R Soc B 363(1492):717–739

    PubMed  Google Scholar 

  • Sidhu RS, Hammond BG, Fuchs RL, Mutz J, Holden LR (2000) Glyphosate-tolerant corn: the composition and feeding value of grain from glyphosate-tolerant corn is equivalent to that of conventional corn (Zea mays). J Agric Food Chem 48:2305–2312

    CAS  PubMed  Google Scholar 

  • Singh M, Tiwari DP, Kumar A (2003) Effects of feeding transgenic cotton seeds on nutrients utilization, milk production and its composition in lactating Murrah buffaloes. Buffalo J 19:117–126

    Google Scholar 

  • Tripathi MK, Mondal D, Somvanshi R, Karim SA (2011) Haematology, blood biochemistry and tissue histopathology of lambs maintained on diets containing an insect controlling protein (Cry1Ac) in Bt cotton seed. J Anim Physiol Anim Nutr (Berl) 95:545–555

    CAS  Google Scholar 

  • Tudisco R, Lombardi P, Bovera F, d’Angelo D, Cutrignelli MI (2006) Genetically modified soyabean in rabbit feeding: detection of DNA fragments and evaluation of metabolic effects by enzymatic analysis. Anim Sci 82:193–199

    CAS  Google Scholar 

  • Verma SR (2013) Genetically modified plants: public and scientific perceptions. ISRN Biotechnol. Article ID 820671:11

    Google Scholar 

  • Wang Z, Zemetra RS, Hansen J, Mallory-Smith C (2001) The fertility of wheat jointed goatgrass hybrid and its backcross progenies. Weed Sci 49:340–345

    CAS  Google Scholar 

  • Warwick SI, Beckie HJ, Hall LM (2009) Gene flow, invasiveness, and ecological impact of genetically modified crops. Ann N Y Acad Sci 1168:72–99

    PubMed  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    CAS  Google Scholar 

  • Yadav SK, Soni R, Rajput AS (2018) Role of microbes in organic farming for sustainable agro-ecosystem. In: Panpatte D, Jhala Y, Shelat H, Vyas R (eds) Microorganisms for green revolution. Microorganisms for sustainability, vol 7. Springer, Singapore, pp 241–252

    Google Scholar 

  • Yan S et al (2015) Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators. Sci Rep 5:15917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamana QU, Lia C, Chenga H, Hua Q (2018) Genome editing opens a new era of genetic improvement in polyploid crops. Crop J 7(2):141–150

    Google Scholar 

  • Zhang CJ, Yook MJ, Park HR, Lim SH, Kim JW, Nah G, Song HR, Jo BH, Roh KH, Park S, Kim DS (2018) Assessment of potential environmental risks of transgene flow in smallholder farming systems in Asia: Brassica napus as a case study in Korea. Sci Total Environ 640–641:688–695

    PubMed  Google Scholar 

Download references

Acknowledgment

Kuldeep Bauddh is thankful to Science and Engineering Research Board (SERB) Research Grant No. EEQ/2017/000476 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukalyan Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, A.K., Chakraborty, S., Kumari, K., Bauddh, K. (2020). Ecological Consequences of Genetically Modified Crops on Soil Biodiversity. In: Bauddh, K., Kumar, S., Singh, R., Korstad, J. (eds) Ecological and Practical Applications for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-3372-3_5

Download citation

Publish with us

Policies and ethics