Skip to main content

Sustainable Agricultural Approaches for Enhanced Crop Productivity, Better Soil Health, and Improved Ecosystem Services

  • Chapter
  • First Online:
Ecological and Practical Applications for Sustainable Agriculture

Abstract

Agriculture is an important sector that provides food, fiber, and fuel, and other vital commodities which possibly sustains life on Earth. In recent time, the growing human population demands a large amount of agriculture commodities to fulfill the need. Therefore, agriculture has been escalating rapidly, which introduced various modern practices and technologies that affect the environment in many ways. The excessive use of chemical fertilizers and pesticides contaminates the air, water, and soil. Although the use of synthetic fertilizers and pesticides enhances crop productivity, it also deteriorates the soil health. There is a need to explore the economically sound and ecologically viable alternatives which can address these concerns. Numerous sustainable cropping practices like the application of biofertilizer, slow-release fertilizers, biochar, vermicompost, zero or low tillage, etc., have been investigated and found substantially effective. In the present chapter, a thorough discussion about these technologies has been made. Moreover, how these technologies can be incorporated with modern/corporate agricultural tools has also been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Naqeeb MAR, Al-Hilfy IHH, Hamza JH, Al-Zubade ASM, Al-Abodi HMK (2018) Biofertilizer (EM-1) effect on growth and yield of three bread wheat cultivars. J Cent Eur Agric 19(3):530–543

    Google Scholar 

  • Andriamananjara A, Rakotoson T, Razanakoto OR, Razafimanantsoa MP, Rabeharisoa L, Smolders E (2018) Farmyard manure application in weathered upland soils of Madagascar sharply increase phosphate fertilizer use efficiency for upland rice. Field Crops Res 222:94–100

    Google Scholar 

  • Arikan Ş, Pirlak L (2016) Effects of plant growth promoting rhizobacteria (PGPR) on growth, yield and fruit quality of sour cherry (Prunus cerasus L.). Erwerbs-obstbau 58(4):221–226

    Google Scholar 

  • Arora M, Kaur A (2019) Azolla pinnata, Aspergillus terreus, and Eisenia fetida for faster recycling of nutrients from wheat straw. Environ Sci Pollut Res 26(31):1–12

    Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337(1–2):1–18

    CAS  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24

    Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int J Biol Sci 3(12):80–85

    Google Scholar 

  • Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38(1):15–20

    Google Scholar 

  • Barraquio WL, Segubre EM, Gonzalez MS, Verma SC, James EK, Ladha JK, Tripathi AK (2000) In the quest for nitrogen fixation in rice. IRRI, Los Banos, pp 93–118

    Google Scholar 

  • Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141

    Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1–6

    Google Scholar 

  • Biederbeck VO, Campbell CA, Rasiah V, Zentner RP, Wen G (1998) Soil quality attributes as influenced by annual legumes used as green manure. Soil Biol Biochem 30:1177–1185

    CAS  Google Scholar 

  • Bitew Y, Alemayehu M (2017) Impact of crop production inputs on soil health: a review. Asian J Plant Sci 16(3):109–131

    CAS  Google Scholar 

  • Blouin M, Barrere J, Meyer N, Lartigue S, Barot S, Mathieu J (2019) Vermicompost significantly affects plant growth. A meta-analysis. Agron Sustain Dev 39(4):1–15

    CAS  Google Scholar 

  • Brevik EC (2010) Soil health and productivity. In: Soils, plant growth and crop protection, vol 1. UNESCO, p 106

    Google Scholar 

  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD et al (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206(1):107–117

    Google Scholar 

  • Bullock DG (1992) Crop rotation. Crit Rev Plant Sci 11(4):309–326

    Google Scholar 

  • Bunemann EK, Schwenke GD, Zwieten LV (2006) Impact of agricultural inputs on soil organisms - a review. Aust J Soil Res 44:379–406

    Google Scholar 

  • Carman JA, Vlieger HR, Ver Steeg LJ, Sneller VE, Robinson GW, Clinch-Jones CA et al (2013) A long-term toxicology study on pigs fed a combined genetically modified (GM) soy and GM maize diet. J Org Syst 8(1):38–54

    Google Scholar 

  • Cherr CM, Scholberg JMS, McSorley R (2006) Green manure approaches to crop production. Agron J 98(2):302–319

    Google Scholar 

  • Cline GR, Silvernail AF (2002) Effects of cover crops, nitrogen, and tillage on sweet corn. Hortic Technol 12:118–125

    Google Scholar 

  • Couëdel A, Alletto L, Tribouillois H, Justes É (2018) Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services. Agric Ecosyst Environ 254:50–59

    Google Scholar 

  • De Meyer SE, Ruthrof KX, Edwards T, Hopkins AJ, Hardy G, O’Hara G, Howieson J (2018) Diversity of endemic rhizobia on Christmas Island: implications for agriculture following phosphate mining. Syst Appl Microbiol 41(6):641–649

    PubMed  Google Scholar 

  • Dighe NS, Shukla D, Kalkotwar RS, Laware RB, Bhawar SB, Gaikwad RW (2010) Nitrogenase enzyme: a review. Der Pharmacia Sinica 1(2):77–84

    CAS  Google Scholar 

  • Doan TT, Henry-des-Tureaux T, Rumpel C, Janeau JL, Jouquet P (2015) Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in northern Vietnam: a three year mesocosm experiment. Sci Total Environ 514:147–154

    CAS  PubMed  Google Scholar 

  • Domingo JL, Bordonaba JG (2011) A literature review on the safety assessment of genetically modified plants. Environ Int 37:734–742

    PubMed  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265

    CAS  Google Scholar 

  • Duran RE, Kilic S, Coskun Y (2015) Response of maize (Zea mays L. saccharata Sturt) to different concentration treatments of deltamethrin. Pest Biochem Physiol 124:15–20

    CAS  Google Scholar 

  • Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376(1–2):1–29

    CAS  Google Scholar 

  • FAO (2014) Ethiopia: El Nino-Southern Oscillation (ENSO) and the main Kiremt rainy season an assessment using FAO’s Agricultural Stress Index System (ASIS). http://www.fao.org/es/GIEWS/english/shortnews/enso27062014.htm

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Google Scholar 

  • Government of India (2013) State of Indian agriculture 2012–13. Ministry of Agriculture, Department of Agriculture and Cooperation, Directorate of Economics and Statistics, New Delhi

    Google Scholar 

  • Gowdy J, Baveye P (2019) An evolutionary perspective on industrial and sustainable agriculture. In: Lemaire G, Carvalho PCF, Kronberg S, Recous S (eds) Agroecosystem diversity. Academic, Cambridge, MA, pp 425–433

    Google Scholar 

  • Goyal S, Chandler K, Mundra MC, Kapoor KK (1999) Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biol Fertil Soils 29:196–200

    CAS  Google Scholar 

  • Gundi VA, Narasimha G, Reddy BR (2005) Interaction effects of insecticides on microbial populations and dehydrogenase activity in a black clay soil. J Environ Sci Health 40(2):69–283

    Google Scholar 

  • Hazell PBR (2009) The Asian green revolution. IFPRI discussion paper 00911. The International Food Policy Research Institute (IFPRI). https://core.ac.uk/download/pdf/6257689.pdf

  • Henry RS, Johnson WG, Wise KA (2011) The impact of a fungicide and an insecticide on soybean growth, yield, and profitability. Crop Prot 30(12):1629–1634

    CAS  Google Scholar 

  • Hiddink GA, Termorshuizen AJ, Van BAH (2010) Mixed cropping and suppression of soilborne diseases. In: Lichtfouse E (ed) Genetic engineering, biofertilisation, soil quality and organic farming. Springer, Dordrecht, pp 119–146

    Google Scholar 

  • Hilbeck A, Binimelis R, Defarge N, Steinbrecher R et al (2015) No scientific consensus on GMO safety. Environ Sci Eur 27(1):1–6

    Google Scholar 

  • Hoorman J, Aziz I, Reeder R, Sundermeier A, Islam R (2011) Soil terminology and definitions. Agric Nat Res Fact Sheet SAG-19-11:1–8

    Google Scholar 

  • IFA (2015) IFADATA. International Fertilizer Association. http://ifadata.fertilizer.org/ucSearch.aspx

  • Iijima M, Awala SK, Watanabe Y, Kawato Y et al (2016) Mixed cropping has the potential to enhance flood tolerance of drought-adapted grain crops. J Plant Physiol 192:21–25

    CAS  PubMed  Google Scholar 

  • Jagadeeswaran R, Murugappan V, Govindaswamy M, Kumar PS (2007) Influence of slow release fertilizers on soil nutrient availability under turmeric (Curcuma longa L.). Asian J Agric Res 1(3):105–111

    CAS  Google Scholar 

  • Kandpal V (2014) Biopesticides. J Environ Res Develop 4(2):191–196

    Google Scholar 

  • Kesavan PC, Swaminathan MS (2007) Strategies and models for agricultural sustainability in developing Asian countries. Philos Trans R Soc Lond Ser B Biol Sci 363(1492):877–891

    Google Scholar 

  • Kumar M, Bauddh K, Sainger M, Sainger PA, Singh JS, Singh RP (2012) Increase in growth, productivity and nutritional status of rice (Oryza sativa L. c.v. basmati) and enrichment in soil fertility applied with an organic matrix entrapped urea. J Crop Sci Biotechnol 15(2):137–144

    Google Scholar 

  • Kumar M, Bauddh K, Kumar S, Sainger M, Sainger PA, Singh RP (2013a) Increase in growth, productivity and nutritional status of wheat (Triticum aestivum L. C.v. Wh-711) and enrichment in soil fertility applied with organic matrix entrapped urea. J Environ Biol 34:1–9

    PubMed  Google Scholar 

  • Kumar S, Bauddh K, Barman SC, Singh RP (2013b) Evaluation of conventional and organic matrix entrapped urea and diammonium phosphate for growth and productivity of Triticum aestivum L. and mobilization of NO3, NO2, NH4+ and PO4−3 from soil to plant leaves. Int J Agron Plant Prod 4(6):1357–1368

    Google Scholar 

  • Kumar S, Bauddh K, Barman SC, Singh RP (2014a) Amendments of microbial biofertilizers and organic substances reduces requirement of urea and DAP with enhanced nutrient availability and productivity of wheat (Triticum aestivum L.). Ecol Eng 71:432–437

    Google Scholar 

  • Kumar S, Bauddh K, Barman SC, Singh RP (2014b) Organic matrix entrapped bio-fertilizers increase growth, productivity and yield of Triticum aestivum L. and mobilization of NO3, NO2, NH4+ and PO4−3 from soil to plant leaves. J Agric Sci Tech 16(2):315–329

    Google Scholar 

  • Kumar M, Bauddh K, Sainger M, Sainger PA, Singh RP (2014c) Increase in growth, productivity and nutritional status of wheat (Triticum aestivum L.) and enrichment in soil microbial population applied with biofertilizers entrapped with organic matrix. J Plant Nutr 38:260–276

    Google Scholar 

  • Kumar M, Bauddh K, Kumar S, Sainger M, Sainger PA, Singh RP (2015) Enhancing efficacy of Azotobacter and Bacillus entrapping in organic matrix for rice cultivation. Agroecol Sust Food Syst 39:907–923

    Google Scholar 

  • Kumar AS, Wafula WN, Korir NK (2019) Effect of biofertilizer on growth and yield characteristics of Zea mays L. in different ecological zones in Kenya. Asian J Soil Sci Plant Nutr 4(3):1–7

    Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374:523–537

    CAS  Google Scholar 

  • Leung H, Zhu Y, Revilla-Molina I, Fan JX et al (2003) Using genetic diversity to achieve sustainable rice disease management. Plant Dis 87(10):1156–1169

    PubMed  Google Scholar 

  • Li Y, Sun Y, Liao S, Zou G, Zhao T et al (2017) Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agric Water Manag 186:139–146

    Google Scholar 

  • Liu G, Zotarelli L, Li Y, Dinkins D, Wang Q et al (2014) Controlled-release and slow-release fertilizers as nutrient management tools. Hort Sci Dept HS1255:1–7

    Google Scholar 

  • Luo L, Qin L, Wang Y, Wang Q (2016) Environmentally-friendly agricultural practices and their acceptance by smallholder farmers in China—a case study in Xinxiang County, Henan Province. Sci Total Environ 571:737–743

    CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Kennedy AC, Chirwa RM (2011) Grain legume impacts on soil biological processes in sub-Saharan Africa. African J Plant Sci 5(1):1–7

    Google Scholar 

  • Ma KZ, Hao SG, Zhao HY, Kang L (2007) Strip cropping wheat and alfalfa to improve the biological control of the wheat aphid Macrosiphum avenae by the mite Allothrombium ovatum. Agric Ecosyst Environ 119(1–2):49–52

    Google Scholar 

  • Maddela NR, Venkateswarlu K (2018) Impact of Acephate and Buprofezin on soil amylases. In: Insecticides soil microbiota interactions. Springer, Cham, pp 41–48

    Google Scholar 

  • Mahato S, Kafle A (2018) Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Ann Agrar Sci 16(3):250–256

    Google Scholar 

  • Maikhuri RK, Semwal RL, Rao KS, Nautiyal S, Saxena KG (1997) Eroding traditional crop diversity imperils the sustainability of agricultural systems in central Himalaya. Curr Sci 73(9):777–782

    Google Scholar 

  • Malusà E, Ciesielska J (2014) Biofertilisers: a resource for sustainable plant nutrition. Fertil Technol 1(1):282–319

    Google Scholar 

  • Mia MB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9(37):6001–6009

    Google Scholar 

  • Mishra M (2013) Role of eco-friendly agricultural practices in Indian agriculture development. Int J Agric Food Sci Tech 4(2):11–15

    Google Scholar 

  • Misra RV, Roy RN, Hiraoka H (2003) On-farm composting methods. Food and Agriculture Organization of the United Nations, Rome, pp 28–29

    Google Scholar 

  • Mohammadi K (2012) Phosphorus solubilising bacteria: occurrence, mechanisms and their role in crop production. Resour Environ 2(1):80–85

    Google Scholar 

  • Nascente AS, Crusciol CAC, Cobucci T (2013) The no-tillage system and cover crops—alternatives to increase upland rice yields. Eur J Agron 45:124–131

    Google Scholar 

  • Nicholls CI, Altieri MA (2001) Manipulating plant biodiversity to enhance biological control of insect pests: a case study of a northern California vineyard. In: Gliessman SR (ed) Agroecosystem sustainability: developing practical strategies. CRC, Boca Raton, FL, pp 29–50

    Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    CAS  PubMed  Google Scholar 

  • Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46(8):861–875

    Google Scholar 

  • Palansooriya KN, Ok YS, Awad YM, Lee SS et al (2019) Impacts of biochar application on upland agriculture: a review. J Environ Manag 234:52–64

    CAS  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ et al (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3):1–17

    CAS  Google Scholar 

  • Petrie CA, Bates J (2017) ‘Multi-cropping’, intercropping and adaptation to variable environments in Indus South Asia. J World Prehist 30(2):81–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Picasso VD, Brummer EC, Liebman M, Dixon PM, Wilsey BJ (2008) Crop species diversity affects productivity and weed suppression in perennial polycultures under two management strategies. Crop Sci 48(1):331–342

    Google Scholar 

  • Pimentel D, Acquay H, Biltonen M, Rice P et al (1992) Environmental and economic costs of pesticide use. Bioscience 42(10):750–760

    Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2011) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Google Scholar 

  • Qin LH, Wang Y, Wu YF, Wang Q, Luo LG (2015) Assessment of nitrate leakage and N2O emission from five environmental-friendly agricultural practices using fuzzy logic method and empirical formula. Environ Monit Assess 187:1–12

    CAS  Google Scholar 

  • Rai A, Kumar S, Bauddh K, Singh N, Singh RP (2017) Improvement in growth and alkaloid content of Rauwolfia serpentina on application of organic matrix entrapped biofertilizers (Azotobacter chroococcum, Azospirillum brasilense and Pseudomonas putida). J Plant Nut 40(16):2237–2247

    CAS  Google Scholar 

  • Raimi A, Adeleke R, Roopnarain A (2017) Soil fertility challenges and Biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric 3(1):1–26

    Google Scholar 

  • Raja N (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestici 4(1):1–2

    Google Scholar 

  • Rajeshkumar S, Selvaraj T (2006) Influence of native arbuscular mycorrhizal fungi on the growth, nutrition and biomass production of tea var., UPASI-9. Indian J Appl Pure Biol 21(1):31–38

    Google Scholar 

  • Rehman A, Nautiyal CS (2002) Effect of drought on the growth and survival of the stress-tolerant bacterium rhizobium sp. NBRI 2505 Sesbania and its drought-sensitive transposon Tn5 mutant. Curr Microbiol 45:368–377

    CAS  Google Scholar 

  • Rekha GS, Kaleena PK, Elumalai D, Srikumaran MP, Maheswari VN (2018) Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annum (Linn.) Hepper. Int J Recycl Org Waste Agric 7(1):83–88

    Google Scholar 

  • Sadhana B (2014) Arbuscular Mycorrhizal Fungi (AMF) as a biofertilizer-a review. Int J Curr Microbiol App Sci 3(4):384–400

    Google Scholar 

  • Saikia SP, Bora D, Goswami A, Mudoi KD, Gogoi A (2012) A review on the role of Azospirillum in the yield improvement of non-leguminous crops. Afr J Microbiol Res 6(6):1085–1102

    Google Scholar 

  • Sánchez NV, Zornoza R, Faz Á, Fernández JA (2019) Comparing legumes for use in multiple cropping to enhance soil organic carbon, soil fertility, aggregates stability and vegetables yields under semi-arid conditions. Sci Hortic 246:835–841

    Google Scholar 

  • Sarkar A, vanLoon GW (2015) Modern agriculture and food and nutrition insecurity: paradox in India. Public Health 129(9):1291–1293

    CAS  PubMed  Google Scholar 

  • Schreck E, Geret F, Gontier L, Treilhou M (2008) Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea caliginosa nocturna. Chemosphere 71:1832–1839

    CAS  PubMed  Google Scholar 

  • Séralini GE, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M et al (2014) Republished study: long-term toxicity of a roundup herbicide and a roundup-tolerant genetically modified maize. Environ Sci Eur 26(1):1–17

    Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium Solubilizers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol Appl Sci 3(9):622–629

    Google Scholar 

  • Shiva V, Singh V (2015) Wealth per acre. Natraj, New Delhi

    Google Scholar 

  • Singh S (2006) Corporate farming in India: is it must for agricultural development? W.P. no. 2006-11-06, IIM Ahmedabad

    Google Scholar 

  • Singh RP, Sainger M, Bauddh K, Senger RS, Jaiwal PK (2010) Sustained nutrient supply reduced nutrient loss and high plant productivity with slow release fertilizers. In: Senger RS, Sharma AK (eds) Stable food production and sustainable agriculture. Studium Press, Lanham, pp 62–79

    Google Scholar 

  • Singh A, Weisser WW, Hanna R, Houmgny R, Zytynska SE (2017) Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon. Pest Manag Sci 73(10):2017–2027

    CAS  PubMed  Google Scholar 

  • Sinha RK, Agarwal S, Chauhan K, Valani D (2010) The wonders of earthworms and its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers from agriculture. Agric Sci 1(2):6–94

    Google Scholar 

  • Soltani AA, Khavazi K, Asadi-Rahmani H, Omidvari M, Dahaji PA, Mirhoseyni H (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J Agric Sci 2(4):106–115

    Google Scholar 

  • Stevenson JR, Serraj R, Cassman KG (2014) Evaluating conservation agriculture for small-scale farmers in sub-Saharan Africa and South Asia. Agric Ecosyst Environ 187:1–10

    Google Scholar 

  • Sumner DR (2018) Crop rotation and plant productivity. In: Handbook of agricultural productivity. CRC, Boca Raton, pp 273–314

    Google Scholar 

  • Tadesse T, Dechassa N, Bayu W, Gebeyehu S (2013) Effects of farmyard manure and inorganic fertilizer application on soil physico-chemical properties and nutrient balance in rain-fed lowland rice ecosystem. Am J Plant Sci 1(4):275–301

    Google Scholar 

  • Taiwo AM (2019) A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere 220:1126–1140

    CAS  Google Scholar 

  • Tian C, Zhou X, Liu Q, Peng JW, Wang WM et al (2016) Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.). J Zhejiang Univ Sci B 17(10):775–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK et al (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89(1):136–150

    CAS  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8(8):857–874

    Google Scholar 

  • United Nations Summit on Sustainable Development, New York (2015) https://sustainabledevelopment.un.org/sdgs

  • Venter ZS, Jacobs K, Hawkins HJ (2016) The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59(4):215–223

    Google Scholar 

  • Wang RF, An DG, Hu CS et al (2011) Relationship between nitrogen uptake and use efficiency of winter wheat grown in the North China plain. Crop Pasture Sci 62(6):504–514

    Google Scholar 

  • Yang DING, Yunguo LIU, Shaobo LIU, HUANG X, Zhongwu LI et al (2017) Potential benefits of biochar in agricultural soils: a review. Pedosphere 27(4):645–661

    Google Scholar 

  • Zandvakili OR, Ebrahimi E, Hashemi M, Barker AV, Akbari P (2017) The potential of green manure mixtures to provide nutrients to a subsequent lettuce crop. Commun Soil Sci Plant Anal 48(19):2246–2255

    CAS  Google Scholar 

  • Zhang Q, Zhang CH (2005) Why do slow- and controlled-fertilizer release fertilizers develop slowly? Chin Rural Sci Tech 3:28–29

    CAS  Google Scholar 

  • Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1:125–144

    CAS  Google Scholar 

  • Zhang D, Min Q, Liu M, Cheng S (2012) Ecosystem service tradeoff between traditional and modern agriculture: a case study in Congjiang County, Guizhou Province, China. Front Environ Sci Eng 6(5):743–752

    Google Scholar 

  • Zheng X (2010) Analysis of the influencing factors on the farmers’ use of manures in Danjiangkou reservoir area. J Hunan Agric Univ (Soc Sci) 1:11–15

    Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Science and Engineering Research Board (SERB), New Delhi, India, for the award of research grant (EEQ/2017/000476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Bauddh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, L., Bauddh, K. (2020). Sustainable Agricultural Approaches for Enhanced Crop Productivity, Better Soil Health, and Improved Ecosystem Services. In: Bauddh, K., Kumar, S., Singh, R., Korstad, J. (eds) Ecological and Practical Applications for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-3372-3_1

Download citation

Publish with us

Policies and ethics