Skip to main content

Trichoderma Interactions in Vegetable Rhizosphere Under Tropical Weather Conditions

  • Chapter
  • First Online:
Trichoderma

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

The use of Trichoderma in world agriculture has established itself as an alternative for sustainable production. Not always bioproducts developed in other latitudes have managed to respond adequately when they are introduced in soils of tropical climate. It has been mentioned that poor adaptation to these conditions causes some isolates not to be incorporated into the soil microbiome; however, several factors regulate the structure of a microorganism’s community associated with a crop. This chapter details aspect related to research with native isolates with the aim of improving the inoculation techniques of the fungus and its establishment in rhizosphere of onion, garlic, and sweet pepper crops, under tropical environmental conditions in Central America. Tests carried out over several years have shown that even native isolates may have an irregular behavior in terms of their capacity for mycoparasitism, growth regulation, and influence on yield. It is necessary to deepen into the way in which biological control mechanisms of each Trichoderma species and isolates are affected by the soil dynamics, the climatic factors, the systems and intensity of the crop, and the forms of inoculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afsharmanesh H, Ahmadzadeh M, Javan-Nikkhah M, Behboudi K (2010) Characterization of the antagonistic activity of a new indigenous strain of Pseudomonas fluorescens isolated from onion rhizosphere. J Plant Pathol 92:187–194

    CAS  Google Scholar 

  • Almeida KA, Armesto C, Monteiro FP, de Souza JT (2018) Diversity of Trichoderma species isolated from dead branches and sapwood of Theobroma cacao trees. Trop Plant Pathol 43(1):90–94

    Article  Google Scholar 

  • Alvarado-Marchena L, Rivera-Méndez W (2016) Molecular identification of Trichoderma spp. in garlic and onion fields and in vitro antagonism trials on Sclerotium cepivorum. Rev Bras Ciênc Solo 40

    Google Scholar 

  • Atanasova L, Le Crom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2013) Comparative transcriptomics reveals different strategies of En la comprensión Trichoderma mycoparasitism. BMC Genomics 14(1):121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Crozier J, Thomas SE, Samuels GJ et al (2008) Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46(1):24–35

    Article  Google Scholar 

  • Bal U, Altintas S (2006) Application of the antagonistic fungus Trichoderma harzianum (TrichoFlow WP™) to root zone increases yield of bell peppers grown in soil. Biol Agric Hortic 24(2):149–163

    Article  Google Scholar 

  • Barlow J, França F, Gardner TA, Hicks CC, Lennox GD, Berenguer E et al (2018) The future of hyperdiverse tropical ecosystems. Nature 559(7715):517

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Rybakova D, Grube M, Köberl M (2015) The plant microbiome explored: implications for experimental botany. J Exp Bot 67(4):995–1002

    Article  PubMed  CAS  Google Scholar 

  • Bettiol W, Rivera MC, Mondino P, Montealegre JR, Colmenarez Y (2014). Control biológico de enfermedades de plantas en América Latina y el Caribe. Embrapa Meio Ambiente-Livro científico (ALICE)

    Google Scholar 

  • Brenes-Madriz J, Zúñiga-Vega C, Villalobos-Araya M, Zúñiga-Poveda C, Rivera-Méndez W (2019) Efectos de Trichoderma asperellum en la estimulación del crecimiento en chile dulce (Capsicum annum) variedad Nathalie en ambientes protegidos. Rev Tecnol Marcha. https://doi.org/10.18845/tm.v32i3.4481

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Coşkuntuna A, Özer N (2008) Biological control of onion basal rot disease using Trichoderma harzianum and induction of antifungal compounds in onion set following seed treatment. Crop Prot 27(3–5):330–336

    Article  CAS  Google Scholar 

  • Cummings NJ, Ambrose A, Braithwaite M, Bissett J, Roslan HA, Abdullah J et al (2016) Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol Prog 15(5):50

    Article  Google Scholar 

  • De Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L et al (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci 110(35):14296–14301

    Article  PubMed  PubMed Central  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10):579

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103(3):626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner T, Acosta-Martinez V, Senwo Z, Dowd SE (2011) Soil rhizosphere microbial communities and enzyme activities under organic farming in Alabama. Diversity 3(3):308–328

    Article  CAS  Google Scholar 

  • Geerts B, Linacre E (2002) Climates and weather explained. Routledge, London

    Book  Google Scholar 

  • Ghini R, Bettiol W, Hamada E (2011) Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol 60(1):122–132

    Article  Google Scholar 

  • Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69(7):3758–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green JL et al (2004) Spatial scaling of microbial eukaryote diversity. Nature 432(7018):747

    Article  CAS  PubMed  Google Scholar 

  • Hamilton CE, Bever JD, Labbé J, Yang X, Yin H (2016) Mitigating climate change through managing constructed-microbial communities in agriculture. Agric Ecosyst Environ 216:304–308

    Article  Google Scholar 

  • Jacobs JL, Fasi AC, Ramette A, Smith JJ, Hammerschmidt R, Sundin GW (2008) Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol 74(10):3121–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Singh A, Singh BN, Singh S, Upadhyay RS, Sarma BK, Singh HB (2013) Biotic stress management in agricultural crops using microbial consortium. In: Bacteria in agrobiology: disease management. Springer, Berlin, pp 427–448

    Chapter  Google Scholar 

  • Johns NI, Blazejewski T, Gomes AL, Wang HH (2016) Principles for designing synthetic microbial communities. Curr Opin Microbiol 31:146–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung BK, Sang-Dal K, Khan AR, Jong-Hui L, Kim YH, Song JH et al (2015) Rhizobacterial communities and red pepper (Capsicum annum) yield under different cropping systems. Int J Agric Biol 17(4):734

    Article  CAS  Google Scholar 

  • Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33(8):155

    Article  PubMed  Google Scholar 

  • Kim YT, Cho M, Jeong JY, Lee HB, Kim SB (2010) Application of terminal restriction fragment length polymorphism (T-RFLP) analysis to monitor effect of biocontrol agents on rhizosphere microbial community of hot pepper (Capsicum annuum L.). J Microbiol 48(5):566–572

    Article  CAS  PubMed  Google Scholar 

  • Kolton M, Harel YM, Pasternak Z, Graber ER, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 7(14):4924–4930

    Article  CAS  Google Scholar 

  • Lamdan NL, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14(4):1054–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123

    Article  Google Scholar 

  • Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob Ecol Biogeogr 19(4):423–431

    Google Scholar 

  • Mendes LW, Tsai SM, Navarrete AA, De Hollander M, van Veen JA, Kuramae EE (2015) Soil-borne microbiome: linking diversity to function. Microb Ecol 70(1):255–265

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, Horwitz BA, Mukherjee PK (2018) Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biol Rev 32(2):62–85

    Article  Google Scholar 

  • Metcalf DA, Dennis JJC, Wilson CR (2004) Effect of inoculum density of Sclerotium cepivorum on the ability of Trichoderma koningii to suppress white rot of onion. Plant Dis 88(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Miranda MA, Estrella AH, Cabriales JP (2006) Colonization of the rhizosphere, rhizoplane and endorhiza of garlic (Allium sativum L.) by strains of Trichoderma harzianum and their capacity to control allium white-rot under field conditions. Soil Biol Biochem 38(7):1823–1830

    Article  CAS  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, de Valpine P, Brodie EL, Firestone MK (2016) Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97(5):1307–1318

    Article  PubMed  Google Scholar 

  • Okoth SA, Okoth P, Muya E (2009) Influence of soil chemical and physical properties on occurrence of Trichoderma spp. in Embu, Kenya. Trop Subtrop Agroecosyst 11(2):303–312

    Google Scholar 

  • Özer N, Köycü ND (2004) Seed-borne fungal diseases of onion, and their control. In: Fruit and vegetable diseases. Springer, Dordrecht, pp 281–306

    Chapter  Google Scholar 

  • Rivera-Méndez W (2016) Microbiological control as experience of local sustainability in Central American agriculture. Tecnol Marcha 30(4):31–40

    Google Scholar 

  • Rivera-Méndez W, Brenes-Madriz J, Zúñiga-Vega O (2018a) Efectos de la aplicación de Trichoderma asperellum y su filtrado en el crecimiento de almácigos de cebolla (Allium cepa). Rev Tecnol Marcha 31(2):98–105

    Article  Google Scholar 

  • Rivera-Méndez W, Fuentes-Alfaro R, Courrau-López K, Aguilar-Ulloa W, Zúñiga-Vega C, Brenes-Madriz J (2018b) Biological control of Setophoma terrestris isolated from onion rhizosphere in Costa Rica. Arch Phytopathol Plant Protect:1–12. https://doi.org/10.1080/03235408.2018.1548258

  • Rivera-Méndez W, Obregón M, Morán-Diez ME, Hermosa R, Monte E (2020) Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control 141:104145

    Article  CAS  Google Scholar 

  • Sanchez PA (2019) Properties and management of soils in the tropics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Serna-Chavez HM, Fierer N, Van Bodegom PM (2013) Global drivers and patterns of microbial abundance in soil. Glob Ecol Biogeogr 22(10):1162–1172

    Article  Google Scholar 

  • Shade A, Handelsman J (2011) Beyond the Venn diagram: the hunt for a core microbiomeemi_2585

    Google Scholar 

  • Singh V, Ray S, Bisen K, Keswani C, Upadhyay RS, Sarma BK, Singh HB (2017) Unravelling the dual applications of Trichoderma spp. as biopesticide and biofertilizer. Adv PGPR Res 364

    Google Scholar 

  • Singh P, Hussain T, Patel S, Akhtar N (2018) Impact of climate change on root–pathogen interactions. In: Root biology. Springer, Cham, pp 409–427

    Chapter  Google Scholar 

  • Uzo JO, Currah L (2018) Cultural systems and agronomic practices in tropical climates. In: Onions and allied crops: Volume II: Agronomy biotic interactions. CRC Press, Boca Raton, FL

    Google Scholar 

  • Viterbo A, Ramot O, Chernin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek 81(1–4):549–556

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Marsh EL, Ainsworth EA, Leakey AD, Sheflin AM, Schachtman DP (2017) Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3. Sci Rep 7(1):15019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N et al (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8(1):71

    Article  Google Scholar 

  • Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, Ragan MA et al (2017) Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8(1):215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zachow C, Berg C, Müller H, Monk J, Berg G (2016) Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. J Biotechnol 235:162–170

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Rivera-Méndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivera-Méndez, W. (2020). Trichoderma Interactions in Vegetable Rhizosphere Under Tropical Weather Conditions. In: Sharma, A., Sharma, P. (eds) Trichoderma. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_15

Download citation

Publish with us

Policies and ethics