Skip to main content

DEM Analysis of Ice Loads on Offshore Structures and Ship Hull

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

With the development of offshore oil and gas industry in the cold region, the ice load and ice failure modes during the interaction between sea ice and offshore platform structures in cold regions play important roles in the structural design and fatigue vibration analysis of offshore platforms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brown TG, Määttänen M (2009) Comparison of Kemi-I and Confederation Bridge cone ice load measurement results. Cold Reg Sci Technol 55(1):3–13

    Article  Google Scholar 

  • Dawei G, Xiaoping P, Quan S et al (2017) GPS-based “Snow Dragon” ship impact icebreaking pattern recognition research. Polar Res 29(3)

    Google Scholar 

  • Feng YT, Owen DRJ (2014) Discrete element modelling of large scale particle systems-I: exact scaling laws. Comput Part Mech 1:159–168

    Article  Google Scholar 

  • Frankenstein G, Garner R (1967) Equations for determining the brine volume of sea ice from −0.5 °C to −22.9 °C. J Glaciol 6:943–944

    Article  Google Scholar 

  • Hentz S (2004) Identification and validation of a discrete element model for concrete. J Eng Mech 130(6):709–719

    Article  Google Scholar 

  • Herman A (2012) Influence of ice concentration and floe-size distribution on cluster formation in sea-ice floes. Cent Eur J Phys 10(3):715–722

    Google Scholar 

  • Hopkins MA (1997) Onshore ice pile-up: a comparison between experiments and simulations. Cold Reg Sci Technol 26(3):205–214

    Article  Google Scholar 

  • Hopkins MA (2004) Discrete element modeling with dilated particles. Eng Comput 21:422–430

    Article  Google Scholar 

  • Hopkins MA, Jukka T (1999) Compression of floating ice fields. J Geophys Res Atmos 1041(C7):15815–15826

    Article  Google Scholar 

  • Hopkins MA, Shen HH (2001) Simulation of pancake-ice dynamics in wave field. Ann Glaciol 33:355–360

    Article  Google Scholar 

  • Hopkins MA, Susan F, Thorndike AS (2004) Formation of an aggregate scale in Arctic sea ice. J Geophys Res Oceans 109(109):1032

    Article  Google Scholar 

  • Huang HY (1999) Discrete element modeling of tool-rock interaction. University of Minnesota, Minnesota

    Google Scholar 

  • ISO 19906 (2010) Petroleum and natural gas industries-Arctic offshore structures. International Organization for Standardization

    Google Scholar 

  • Ji S, Wang S (2018) A coupled discrete-finite element method for the ice-induced vibrations of a conical jacket platform with a GPU-based parallel algorithm. Int J Comput Meth 17(4):1850147

    Article  MathSciNet  Google Scholar 

  • Ji S, Di S, Liu S (2015) Analysis of ice load on conical structure with discrete element method. Eng Comput 32(4):1121–1134

    Article  Google Scholar 

  • Ji S, Di S, Long X (2016) DEM simulation of uniaxial compressive and flexural strength of sea ice: parametric study. J Eng Mech 143(1):C4016010

    Google Scholar 

  • Ji S, Yue Q, Bi X (2002) Probability distribution of sea ice fatigue parameters in JZ20-2 sea area of the Liaodong Bay. Ocean Eng 20(3):39–43

    Google Scholar 

  • Ji S, Li Z, Li C, Shang J (2013) Discrete element modeling of ice loads on ship hulls in broken ice fields. Acta Oceaologica Sinica 32(11):50–58

    Article  Google Scholar 

  • Ji S, Wang A, Jie S, Yue Q (2011) Experimental studies on elastic modulus and flexural strength of sea ice in the Bohai Sea. J Cold Reg Eng 25(4):182–195

    Article  Google Scholar 

  • Kato K (1990) Total ice force on multi legged structures. In: Proceedings of 10th international symposium on ice. Espoo, Finland, vol 2, pp 974–983

    Google Scholar 

  • Kato K, Adachi M, Kishimoto H et al (1994) Model experiments for ice forces on multi conical legged structures. In: Proceedings of the 4th ISOPE conference, Osaka, Japan, vol 2, pp 526–534

    Google Scholar 

  • Lau M (2001) A three dimensional discrete element simulation of ice sheet impacting a 60° conical structure. In: Proceedings of the 16th interactional conference on port and ocean engineering under Arctic conditions, Ottawa, Canada, 2001

    Google Scholar 

  • Liu L, Ji S (2018) Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field. Appl Ocean Res 75:53–65

    Article  Google Scholar 

  • Liu L, Sun S, Ji S (2017) Interaction between floater and sea ice simulated with dilated polyhedral DEM. In: International conference on discrete element methods. Springer Singapore

    Google Scholar 

  • Paavilainen J, Tuhkuri J (2013) Pressure distributions and force chains during simulated ice rubbling against sloped structures. Cold Reg Sci Technol 85:157–174

    Article  Google Scholar 

  • Polojärvi A, Tuhkuri J (2013) On modeling cohesive ridge keel punch through tests with a combined finite-discrete element method. Cold Reg Sci Technol 85:191–205

    Article  Google Scholar 

  • Qu Y, Yue Q, Bi X et al (2006) A random ice force model for narrow conical structures. Cold Reg Sci Technol 45:148–157

    Article  Google Scholar 

  • Sakai M, Takahashi H, Pain CC et al (2012) Study on a large-scale discrete element model for fine particles in a fluidized bed. Adv Powder Technol 23(5):673–681

    Article  Google Scholar 

  • Shen HT, Shen HH, Tsai SM (1990) Dynamic transport of river ice. J Hydraul Res 28(6):659–671

    Article  Google Scholar 

  • Shen HT, Liu L, Chen YC (2001) River ice dynamics and ice jam modeling. In: IUTAM symposium on scaling laws in ice mechanics and ice dynamics. Springer, Netherlands

    Chapter  Google Scholar 

  • Sun S, Shen HH (2012) Simulation of pancake ice load on a circular cylinder in a wave and current field. Cold Reg Sci Technol 78:31–39

    Article  Google Scholar 

  • Tian Y, Huang Y (2013) The dynamic ice loads on conical structures. Ocean Eng 59:37–46

    Article  Google Scholar 

  • Timco GW, Irani MB, Tseng J et al (1992) Model tests of dynamic ice loading on the Chinese JZ-20-2 jacket platform. Can J Civ Eng 19:819–832

    Article  Google Scholar 

  • Timco GW, Wright BD, Barker A et al (2006) Ice damage zone around the Molikpaq: implications for evacuation systems. Cold Reg Sci Technol 44(1):67–85

    Article  Google Scholar 

  • Wang S, Ji S (2018) Coupled DEM-FEM analysis of ice-induced vibrations of a conical jacket platform based on the domain decomposition method. In: International society of offshore and polar engineers, 1 June 2018. ISOPE-18-28-2-190

    Article  MathSciNet  Google Scholar 

  • Wang Y, Tonon F (2010) Calibration of a discrete element model for intact rock up to its peak strength. Int J Numer Anal Meth Geomech 34(5):447–469

    Article  Google Scholar 

  • Yan H, Qing-zeng S, An S (2009) Model test study on ice-induced vibrations of compliant multi-cone. China Ocean Eng 23(2):317–328

    Google Scholar 

  • Yan Q, Qianjin Y, Xiangjun B et al (2012) A random ice force model for narrow conical structures. Cold Reg Sci Technol 45(3):148–157

    Article  Google Scholar 

  • Yue Q, Bi X (2000) Ice-induced jacket structure vibrations in Bohai Sea. J Cold Reg Eng 14(2):81–92

    Article  Google Scholar 

  • Yue Q, Qu Y, Bi X, Tuomo K (2007) Ice force spectrum on narrow conical structures. Cold Reg Sci Technol 49:161–169

    Article  Google Scholar 

  • Zhou L, Su B, Riska K et al (2012) Numerical simulation of moored structure station keeping in level ice. Cold Reg Sci Technol 71:54–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunying Ji .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ji, S., Liu, L. (2020). DEM Analysis of Ice Loads on Offshore Structures and Ship Hull. In: Computational Granular Mechanics and Its Engineering Applications. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-3304-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3304-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3303-7

  • Online ISBN: 978-981-15-3304-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics