Skip to main content

Discovery of New Immune Checkpoints: Family Grows Up

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1248))

Abstract

The first generation of immune checkpoint inhibitors (ICIs) including anti-CTLA-4 and anti-PD-1/anti-PD-L1 has achieved profound and great success. Till 2019 Q1, there are nine ICIs landing the oncology market: Ipilimumab (anti-CTLA-4, Bristol-Myers Squibb), Nivolumab (anti-PD-1, Bristol-Myers Squibb), Pembrolizumab (anti-PD-1, Merck), Atezolizumab (anti-PD-L1, Roche/Genentech), Durvalumab (anti-PD-L1, Astra Zeneca), Tremelimumab (anti-CTLA-4, Astra Zeneca), Cemiplimab (anti-PD-1, Sanofi/Regeneron), Toripalimab (anti-PD-1, Junshi), and Sintilimab (anti-PD-1, Innovent), which have covered the majority of hematologic and solid malignancies’ indication. Beyond the considerable benefits for the patients, frustrated boundary still exists: limited response rate in monotherapy in late-stage population, poor effectiveness in neoplasms with immune desert and immune excluded types, and immune-related toxicities, some are life-threatened and with higher incidence in I-O combination regiment. Moreover, clinicians observed some cases switching to progression after achieving partial or complete response, indicating treatment failure or drug resistance. So people begin looking for the next generation of immune checkpoint members.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson AC, Xiao S, Kuchroo VK (2007) TIM protein structures reveal a unique face for ligand binding. Immunity 26:273–275

    Article  CAS  PubMed  Google Scholar 

  • Andrews LP, Marciscano AE, Drake CG et al (2017) LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 276:80–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ascierto PA, Melero I, Bhatia S et al (2017) Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/ PD-L1 therapy. J Clin Oncol 35:9520

    Article  Google Scholar 

  • Aspeslagh S, Postel-Vinay S, Rusakiewi S et al (2016) Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 52:50–66

    Article  CAS  PubMed  Google Scholar 

  • Bansal-Pakala P, Halteman BS, Cheng MH et al (2004) Costimulation of CD8 T cell responses by OX40. J Immunol 172(8):4821–4825

    Article  CAS  PubMed  Google Scholar 

  • Beek AA, Zhou GY, Doukas M et al (2019) GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma. Int J Cancer 145:1119–1124

    Article  CAS  Google Scholar 

  • Blake SJ, Dougall WC, Miles JJ et al (2016) Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin Cancer Res 22:5183–5188

    Article  CAS  PubMed  Google Scholar 

  • Brignone C, Escudier B, Grygar C et al (2009) A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res 15:6225–6231

    Article  CAS  PubMed  Google Scholar 

  • Chauvin J-M, Pagliano O, Fourcade J et al (2015) TIGIT and PD-1 impair tumor antigen specific CD8 + T cells in melanoma patients. J Clin Invest 125:2046–2058

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Ruan ZH (2015) Tim-3 and Tim-4 as the potential targets for antitumor therapy. Hum Vaccines Immunother 11:2458–2462

    Article  Google Scholar 

  • Chester C, Ambulkar S, Kohrt HE (2016) 4‑1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother 65:1243–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chester C, Sanmamed MF, Wang J et al (2018) Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 131(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Cheuk AT, Mufti GJ, Guinn B (2004) Role of 4-1BB:4-1BB ligand in cancer immunotherapy. Cancer Gene Ther 11:215–226

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Baghdadi M, Akiba H et al (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13:832–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouthier DL, Watts TH (2014) Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine Growth Factor Rev 25:91–106

    Article  CAS  PubMed  Google Scholar 

  • Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev 9:271–285

    CAS  Google Scholar 

  • Curti RD, Kovacsovics-Bankowski M, Morris N et al (2013) OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res 73(24):7189–7198

    Google Scholar 

  • Das M, Zhu C, Kuchroo VK (2017) Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 276:97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhoux FP, Jager A, Dirix L et al (2017) Combination of paclitaxel and LAG3-Ig (IMP321), a novel MHC class II agonist, as a first-line chemo-immunotherapy in patients with metastatic breast carcinoma (MBC): interim results from the run-in phase of a placebo controlled randomized phase II. J Clin Oncol 35:1062

    Article  Google Scholar 

  • Freeman GJ, Casasnovas JM, Umetsu DT et al (2010) TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 235:172–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg MV, Drake CG (2011) LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol 344:269–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gur C, Ibrahim Y, Isaacson B et al (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurney AL, Marsters SA, Huang RM et al (1999) Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr Biol CB 9:215–218

    Article  CAS  PubMed  Google Scholar 

  • Hamid O, Thompson JA, Diab A et al (2016) First in human (FIH) study of an OX40 agonist monoclonal antibody (mAb) PF-04518600 (PF-8600) in adult patients (pts) with select advanced solid tumors: preliminary safety and pharmacokinetic (PK)/pharmacodynamic results. J Clin Oncol 34:3079–3079

    Article  Google Scholar 

  • Han G, Chen G, Shen B et al (2013) Tim-3: an activation marker and activation limiter of innate immune cells. Front Immunol 4:449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YH, Zhu C, Kondo Y et al (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386–390

    Article  CAS  PubMed  Google Scholar 

  • Huard B, Prigent P, Tournier M et al (1995) CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol 25:2718–2721

    Article  CAS  PubMed  Google Scholar 

  • Infante JR, Hansen AR, Pishvaian MJ et al (2016) A phase Ib dose escalation study of the OX40 agonist MOXR0916 and the PD-L1 inhibitor atezolizumab in patients with advanced solid tumors. J Clin Oncol 34:101–101

    Article  Google Scholar 

  • Joller N, Hafler JP, Brynedal B et al (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186:1338–1342

    Article  CAS  PubMed  Google Scholar 

  • Joller N, Lozano E, Burkett PR et al (2014) Treg cells expressing the co-inhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knee DA, Hewes B, Brogdon JL (2016) Rationale for anti-GITR cancer immunotherapy. Eur J Cancer 67:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kurtulus S, Sakuishi K, Ngiow S-F et al (2015) TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 125:4053–4062

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane P (2000) Role of OX40 signals in coordinating CD4 T cell selection, migration, and cytokine differentiation in T helper (Th) 1 and Th2 cells. J Exp Med 191(2):201–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Powderly JD, Patel MR et al (2017) Phase 1 trial of CA-170, a novel oral small molecule dual inhibitor of immune checkpoints PD-1 and VISTA, in patients (pts) with advanced solid tumor or lymphomas. J Clin Oncol 35(15_suppl):TPS3099–TPS3099

    Google Scholar 

  • Linch SN, Redmond WL (2014) Combined OX40 ligation plus CTLA-4 blockade. OncoImmunology 3:e28245

    Article  PubMed  PubMed Central  Google Scholar 

  • Linch SN, McNamara MJ, Redmond WL (2015) OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol 5:34

    Google Scholar 

  • Lines JL, Pantazi E, Mak J et al (2014a) VISTA is an immune checkpoint molecule for human T cells. Cancer Res 74(7):1924–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lines JL, Sempere LF, Broughton T et al (2014b) VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol Res 2(6):510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Qian X, Chen Z et al (2012) Crystal structure of cell adhesion molecule nectin-2/CD112 and its binding to immune receptor DNAM-1/CD226. J. Immunol 188:5511–5520

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yuan Y, Chen W et al (2015) Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. PNAS 112:6682–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long L, Zhang X, Chen F et al (2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9(5–6):176–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano E, Dominguez-Villar M, Kuchroo V et al (2012) The TIGIT/CD226 axis regulates human T cell function. J Immunol 188:3869–3875

    Article  CAS  PubMed  Google Scholar 

  • McIntire JJ, Umetsu SE, Akbari O et al (2001) Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2:1109–1116

    Article  CAS  PubMed  Google Scholar 

  • Mercier IL, Chen W, Lines JL et al (2014) VISTA regulates the development of protective antitumor immunity. Cancer Res 74(7):1933–1944

    Article  CAS  PubMed  Google Scholar 

  • Ngiow SF, von Scheidt B, Akiba H et al (2011) Anti-TIM3 antibody promotes T cell IFN-γ Mediated antitumor immunity and suppresses established tumors. Cancer Res 71:3540–3551

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Ohashi PS (2015) Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat Rev Immunol 15:45–56

    Article  CAS  PubMed  Google Scholar 

  • Nowak EC, Lines JL, Varn FS et al (2017) Immunoregulatory functions of VISTA. Immunol Rev 276(1):66–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauken KE, Wherry EJ (2014) TIGIT and CD226: tipping the balance between costimulatory and co-inhibitory molecules to augment the cancer immunotherapy toolkit. Cancer Cell 26:785–787

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig M et al (2010) Development of TRX518, an agylcosyl humanized monoclonal antibody (Mab) agonist of huGITR. J Clin Oncol 28:e13028–e13028

    Article  Google Scholar 

  • Sakuishi K, Ngiow SF, Sullivan JM et al (2013) TIM3(+)FOXP3(+) regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. OncoImmunology 2:e23849

    Article  PubMed  PubMed Central  Google Scholar 

  • Segal NH, Logan TF, Hodi FS et al (2016) Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res 23(8):1929–1936

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu J, Yamazaki S, Takahashi T et al (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142

    Article  CAS  PubMed  Google Scholar 

  • Siu LL, Steeghs N, Meniawy T et al (2017) Preliminary results of a phase I/IIa study of BMS-986156 (glucocorticoid-induced tumor necrosis factor receptor–related gene [GITR] agonist), alone and in combination with nivolumab in pts with advanced solid tumors. J Clin Oncol 35:104–104

    Article  Google Scholar 

  • Solomon BL, Garrido-Laguna I (2018) TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother 67:1659–1667

    Article  CAS  PubMed  Google Scholar 

  • Stamm H, Wellbrock J, Fiedler W (2018) Interaction of PVR/PVRL2 with TIGIT/DNAM-1 as a novel immune checkpoint axis and therapeutic target in cancer. Mamm Genome 29:694–702

    Article  CAS  PubMed  Google Scholar 

  • Stanietsky N, Simic H, Arapovic J et al (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. PNAS 106:17858–17863

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugamura K, Ishii N, Weinberg AD (2004) Therapeutic targeting of the effector T-cell costimulatory molecule OX40. Nat Rev Immunol 4(6):420–431

    Article  CAS  PubMed  Google Scholar 

  • Sukumar S, Wilson DC, Yu Y et al (2017) Characterization of MK-4166, a clinical agonistic antibody that targets human GITR and inhibits the generation and suppressive effects of T regulatory cells. Cancer Res 77(16):4378–4388

    Article  CAS  PubMed  Google Scholar 

  • Takeda I, Ine S, Killeen N et al (2004) Distinct roles for the OX40-OX40 ligand interaction in regulatory and non-regulatory T cells. J Immunol 172(6):3580–3589

    Article  CAS  PubMed  Google Scholar 

  • Tiguea NJ, Bambera L, Andrewsa J et al (2017) MEDI1873, a potent, stabilized hexametric agonist of human GITR with regulatory T-cell targeting potential. OncoImmunology 6(3):e1280645

    Article  CAS  Google Scholar 

  • Tolcher AW, Sznol M, Hu-Lieskovan S et al (2017) Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res 23(18):5349–5357

    Article  CAS  PubMed  Google Scholar 

  • Turner JG, Rakhmilevich AL, Burdelya L et al (2001) Anti-CD40 antibody induces antitumor and anti-metastatic effects: the role of NK cells. J Immunol 166:89–94

    Article  CAS  PubMed  Google Scholar 

  • Vidard L, Dureui C, Baudhuin J et al (2019) CD137 (4-1BB) engagement fine-tunes synergistic IL-15– and IL-21–driven NK cell proliferation. J Immunol 203:676–685

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Rubinstein R, Lines JL et al (2011) VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med 208(3):577–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willoughby J, Griffiths J, Tews I et al (2017) OX40: structure and function - what questions remain? Mol Immunol 83:13–22

    Article  CAS  PubMed  Google Scholar 

  • Woo SR, Turnis ME, Goldberg MV et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72:917–927

    Article  CAS  PubMed  Google Scholar 

  • Workman CJ, Dugger KJ, Vignali DA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169:5392–5395

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Liu J, Liu D et al (2014) LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res 74:3418–3428

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Hiếu TM, Malarkannan S et al (2018) The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 15:438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Harden K, Gonzalez LC et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57

    Article  CAS  PubMed  Google Scholar 

  • Zaini J, Andarini S, Tahara M et al (2007) OX40 ligand expressed by DCs co-stimulates NKT and CD4 + Th cell antitumor immunity in mice. J Clin Invest 117(11):3330–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Y, Gerondakis S, Coghill E et al (2008) Glucocorticoid-induced TNF receptor expression by T cells is reciprocally regulated by NF-kappaB and NFAT. J Immunol 181:5405–5413

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Anderson AC, Schubart A et al (2015) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kong, X. (2020). Discovery of New Immune Checkpoints: Family Grows Up. In: Xu, J. (eds) Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology, vol 1248. Springer, Singapore. https://doi.org/10.1007/978-981-15-3266-5_4

Download citation

Publish with us

Policies and ethics