Skip to main content

Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication

  • Chapter
  • First Online:
Book cover Biomimicked Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1250))

Abstract

A wide variety of hydrogels have been proposed for tissue engineering applications, cell encapsulation, and bioinks for bioprinting applications. Cell-laden hydrogel constructs rely on natural hydrogels such as alginate, agarose, chitosan, collagen, gelatin, fibroin, and hyaluronic acid (HA), as well as on synthetic hydrogels such as poloxamers (Pluronics®) and polyethylene glycol (PEG). Alginate has become more and more important in the last years, thanks to the possibility to prepare alginate hydrogels suitable for cell encapsulation mainly because of the mild and reversible cross-linking conditions. In this paper alginate will be described in detail with respect to its chemistry, cross-linking behavior, biocompatibility, manufacturing capacity, and possible modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozbola IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33(7):395–400

    Article  CAS  Google Scholar 

  2. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11(100):20140817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zimmermann H, Ehrhart F, Zimmermann D et al (2007) Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications. Phys A 89(4):909–922

    CAS  Google Scholar 

  4. Yao H, Wang J, Mi S (2017) Photo processing for biomedical hydrogels design and functionality: a review. Polymers (Basel) 10(1):11

    Article  PubMed Central  CAS  Google Scholar 

  5. Hospodiuk M, Dey M, Sosnoski D et al (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239

    Article  CAS  PubMed  Google Scholar 

  6. Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A 101(1):272–284

    Article  PubMed  CAS  Google Scholar 

  7. Wang S, Lee JM, Yeong WY (2015) Smart hydrogels for 3D bioprinting. Int J Bioprint 1(1):3–14

    Google Scholar 

  8. Jen AC, Wake MC, Mikos AG (2000) Review: hydrogels for cell immobilization. Biotechnol Bioprocess Eng 50(4):357–364

    Google Scholar 

  9. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  CAS  PubMed  Google Scholar 

  10. Peppas NA, Hilt JZ, Khademhosseini A et al (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360

    Article  CAS  Google Scholar 

  11. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  CAS  PubMed  Google Scholar 

  12. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57(3):397–430

    Article  CAS  Google Scholar 

  13. Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:1–8

    Article  Google Scholar 

  14. Catoira MC, Fusaro L, Di Francesco D et al (2019) Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med 30:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Varghese SA, Rangappa SM, Siengchin S et al (2020) Natural polymers and the hydrogels prepared from them. In: Chen Y (ed) Hydrogels based on natural polymers. Elsevier, Chennai, pp p17–p47

    Chapter  Google Scholar 

  16. Geckil H, Xu F, Zhang X et al (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5(3):469–484

    Article  CAS  PubMed  Google Scholar 

  17. Lim F, Sun A (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910

    Article  CAS  PubMed  Google Scholar 

  18. Zimmermann H, Shirley SG, Zimmermann U (2007) Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep 7(4):314–320

    Article  CAS  PubMed  Google Scholar 

  19. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14(2):149–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo M (2019) Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr Polym 229:115514

    Article  PubMed  CAS  Google Scholar 

  22. Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays 4(2):133–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33(11):3279–3305

    Article  CAS  PubMed  Google Scholar 

  24. Orive G, Santos E, Pedraz JL et al (2014) Application of cell encapsulation for controlled delivery of biological therapeutics. Adv Drug Deliv Rev 67–68:3–14

    Article  PubMed  CAS  Google Scholar 

  25. Sarker B (2015) Alginate-based hydrogels with improved adhesive properties for cell encapsulation. Int J Biol Macromol 78:72–78

    Article  CAS  PubMed  Google Scholar 

  26. Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6(8):623–633

    Article  CAS  PubMed  Google Scholar 

  27. Axpe E, Oyen M (2016) Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci 17(12):1976

    Article  PubMed Central  CAS  Google Scholar 

  28. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6(4):1285–1309

    Article  CAS  Google Scholar 

  29. Jitraruch S (2014) Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One 9(12):1–23

    Article  CAS  Google Scholar 

  30. Bhujbal SV, de Vos P, Niclou SP (2014) Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev 67–68:142–153

    Article  PubMed  CAS  Google Scholar 

  31. Murua A, Orive G, Hernández RM et al (2009) Xenogeneic transplantation of erythropoietin-secreting cells immobilized in microcapsules using transient immunosuppression. J Control Release 137(3):174–178

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen D (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7(1):658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Venkatesan J, Nithya R, Sudha PN et al (2014) Role of alginate in bone tissue engineering. Adv Food Nutr Res 73:45–57

    Article  CAS  PubMed  Google Scholar 

  34. Li Q, Hou T, Zhao J et al (2011) Vascular endothelial growth factor release from alginate microspheres under simulated physiological compressive loading and the effect on human vascular endothelial cells. Tissue Eng Part A 17(13–14):1777–1785

    Article  CAS  PubMed  Google Scholar 

  35. Panwar A, Tan L (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21(6):685

    Article  PubMed Central  CAS  Google Scholar 

  36. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4–5):300–311

    Article  CAS  PubMed  Google Scholar 

  37. Gasperini L, Maniglio D, Migliaresi C (2013) Microencapsulation of cells in alginate through an electrohydrodynamic process. J Bioact Compat Polym 28(5):413–425

    Article  CAS  Google Scholar 

  38. Liaudanskaya V, Gasperini L, Maniglio D et al (2015) Assessing the impact of electrohydrodynamic jetting on encapsulated cell viability, proliferation, and ability to self-assemble in three-dimensional structures. Tissue Eng Part C Methods 21(6):631–638

    Article  CAS  PubMed  Google Scholar 

  39. Barron C, He JQ (2017) Alginate-based microcapsules generated with the coaxial electrospray method for clinical application. J Biomater Sci Polym Ed 28(13):1245–1255

    Article  CAS  PubMed  Google Scholar 

  40. Lee BR (2012) In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials 33(3):837–845

    Article  CAS  PubMed  Google Scholar 

  41. Liu L (2013) Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions. J Colloid Interface Sci 404:85–90

    Article  CAS  PubMed  Google Scholar 

  42. Song W, Lima AC, Mano JF (2010) Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter 6(23):5868–5871

    Article  CAS  Google Scholar 

  43. De Vos P, Faas MM, Strand B et al (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27(32):5603–5617

    Article  PubMed  CAS  Google Scholar 

  44. Onoe H, Takeuchi S (2015) Cell-laden microfibers for bottom-up tissue engineering. Drug Discov Today 20(2):236–246

    Article  CAS  PubMed  Google Scholar 

  45. Tamayol A, Akbari M, Annabi N et al (2013) Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol Adv 31(5):669–687

    Article  CAS  PubMed  Google Scholar 

  46. Onoe H, Gojo R, Tsuda Y et al (2010) Core-shell gel wires for the construction of large area heterogeneous structures with biomaterials. In: 2010 IEEE 23rd international conference on micro electro mechanical systems (MEMS) 2010, pp 248–251

    Google Scholar 

  47. Takeuchi S (2013) (2013) cell-laden hydrogel beads, fibers and plates for 3D tissue construction. 2013 transducers and Eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems. Transducers Eurosensors 6:1515–1518

    Google Scholar 

  48. Lee BR, Lee KH, Kang E et al (2011) Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics 5(2):022208

    Article  PubMed Central  CAS  Google Scholar 

  49. Onoen H (2013) Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater 12(6):584–590

    Article  CAS  Google Scholar 

  50. Akbari M (2014) Composite living fibers for creating tissue constructs using textile techniques. Adv Funct Mater 24(26):4060–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jun Y (2013) 3D co-culturing model of primary pancreatic islets and hepatocytes in hybrid spheroid to overcome pancreatic cell shortage. Biomaterials 34(15):3784–3794

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Xu A, Xie H et al (2010) Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr Polym 79(3):660–664

    Article  CAS  Google Scholar 

  53. Bouhadir KH, Lee KY, Alsberg E et al (2001) Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog 17(5):945–950

    Article  CAS  PubMed  Google Scholar 

  54. Mao S, Zhang T, Sun W et al (2012) The depolymerization of sodium alginate by oxidative degradation. Pharm Dev Technol 17(6):763–769

    Article  CAS  PubMed  Google Scholar 

  55. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  CAS  PubMed  Google Scholar 

  56. Hölzl K, Lin S, Tytga L et al (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002

    Article  PubMed  CAS  Google Scholar 

  57. Datta P, Ayan B, Ozbolat IT (2017) Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 51:1–20

    Article  CAS  PubMed  Google Scholar 

  58. Gasperini L, Maniglio D, Motta A et al (2015) An electrohydrodynamic bioprinter for alginate hydrogels containing living cells. Tissue Eng Part C Methods 21(2):123–132

    Article  CAS  PubMed  Google Scholar 

  59. Tabriz AG, Hermida MA, Leslie NR et al (2015) Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 7(4):045012

    Article  PubMed  Google Scholar 

  60. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53

    Article  CAS  PubMed  Google Scholar 

  61. Grigore A, Sarker B, Fabry B et al (2014) Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. Tissue Eng Part A 20(15–16):2140–2150

    Article  CAS  PubMed  Google Scholar 

  62. Yan J, Chen F, Amsden BG (2016) Cell sheets prepared via gel-sol transition of calcium RGD-alginate. Acta Biomater 30:277–284

    Article  CAS  PubMed  Google Scholar 

  63. Yang X, Lu Z, Wu H et al (2018) Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C 83:195–201

    Article  CAS  Google Scholar 

  64. Silva R (2014) Hybrid hydrogels based on keratin and alginate for tissue engineering. J Mater Chem B 2(33):5441–5451

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y (2016) A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering. Sci Rep 6(1):39477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Singh R (2016) Evaluation of hydrogel matrices for vessel bioplotting: vascular cell growth and viability. J Biomed Mater Res Part A 104(3):577–585

    Article  CAS  Google Scholar 

  67. Silva R (2016) Soft-matrices based on silk fibroin and alginate for tissue engineering. Int J Biol Macromol 93(Pt B):1420–1431

    Article  CAS  PubMed  Google Scholar 

  68. Azadi SA, Vasheghani-Farahani E, Hashemi-Najafbabadi S et al (2016) Co-encapsulation of pancreatic islets and pentoxifylline in alginate-based microcapsules with enhanced immunosuppressive effects. Prog Biomater 5(2):101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Desai RM, Koshy ST, Hilderbrand SA et al (2015) Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry. Biomaterials 50:30–37

    Article  CAS  PubMed  Google Scholar 

  70. Hu Y, Mao AS, Desai RM et al (2017) Controlled self-assembly of alginate microgels by rapidly binding molecule pairs. Lab Chip 17(14):2481–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Balakrishnan B, Joshi N, Jayakrishnan A et al (2014) Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater 10(8):3650–3663

    Article  CAS  PubMed  Google Scholar 

  72. Park H, Lee KY (2014) Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res A 102(12):4519–4525

    PubMed  Google Scholar 

  73. Jaikumar D (2015) Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol 74:318–326

    Article  CAS  PubMed  Google Scholar 

  74. Liao J, Wang B, Huang Y et al (2017) Injectable alginate hydrogel cross-linked by calcium gluconate-loaded porous microspheres for cartilage tissue engineering. ACS Omega 2(2):443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jia W (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devid Maniglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonani, W., Cagol, N., Maniglio, D. (2020). Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication. In: Chun, H., Reis, R., Motta, A., Khang, G. (eds) Biomimicked Biomaterials. Advances in Experimental Medicine and Biology, vol 1250. Springer, Singapore. https://doi.org/10.1007/978-981-15-3262-7_4

Download citation

Publish with us

Policies and ethics