Skip to main content

High-Order Discrete-Time Consensus

  • Chapter
  • First Online:
Machine Behavior Design And Analysis
  • 365 Accesses

Abstract

In this chapter, we are concerned with the consensus of high-order discrete-time multi-agent systems. Normally, compared with low-order discrete-time multi-agent systems, the consensus of high-order ones would require the transmission of more information, leading to the increase of communication burden. In this chapter, present distributed discrete-time consensus protocols for such systems, for which the communication burden does not increase compared with the case of low-order ones. The consensus protocols allow different types of communication topologies, including static and time-varying ones. Both theoretical results about the performance of the protocols and the corresponding numerical examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Liu, X. Wang, Z. Li, Robust bipartite consensus and tracking control of high-order multiagent systems with matching uncertainties and antagonistic interactions. IEEE Trans. Syst. Man Cybern. Syst. https://doi.org/10.1109/TSMC.2018.2821181

  2. C. Zhao, X. Duan, Y. Shi, Analysis of consensus-based economic dispatch algorithm under time delays. IEEE Trans. Syst. Man Cybern. Syst.. https://doi.org/10.1109/TSMC.2018.2840821

  3. T. Yang, D. Wu, Y. Sun, J. Lian, Minimum-time consensus-based approach for power system applications. IEEE Trans. Ind. Electron. 63(2), 1318–1328 (2016)

    Article  Google Scholar 

  4. Y. Zhang, S. Li, Predictive suboptimal consensus of multiagent systems with nonlinear dynamics. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1701–1711 (2017)

    Article  MathSciNet  Google Scholar 

  5. Z. Peng, G. Wen, S. Yang, A. Rahmani, Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network. Nonlinear Dyn. 86(1), 605–622 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Yang, Y. Cao, Z. Peng, G. Wen, K. Guo, Distributed formation control of nonholonomic autonomous vehicle via RBF neural network. Mech. Syst. Signal Process. 87, 81–95 (2017)

    Article  Google Scholar 

  7. L. Jin, S. Li, Distributed task allocation of multiple robots: a control perspective. IEEE Trans. Syst. Man Cybern. Syst. 48(5), 693–701 (2018)

    Article  Google Scholar 

  8. L. Jin, S. Li, H. M. La, X. Zhang, B. Hu, Dynamic task allocation in multi-robot coordination for moving target tracking: a distributed approach. Automatica 100, 75–81 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Jin, S. Li, B. Hu, C. Yi, Dynamic neural networks aided distributed cooperative control of manipulators capable of different performance indices. Neurocomputing 291, 50–58 (2018)

    Article  Google Scholar 

  10. L. Jin, S. Li, L. Xiao, R. Lu, B. Liao, Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1715–1724 (2018)

    Article  Google Scholar 

  11. S. Li, M. Zhou, X. Luo, Z. You, Distributed winner-take-all in dynamic networks. IEEE Trans. Autom. Control 62(2), 577–589 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Li, J. He, Y. Li, M.U. Rafique, Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 415–426 (2017)

    Article  MathSciNet  Google Scholar 

  13. L. Jin, S. Li, X. Luo, M. Shang, Nonlinearly-activated noise-tolerant zeroing neural network for distributed motion planning of multiple robot arms, in Proceedings of the International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2017), pp. 4165–4170

    Google Scholar 

  14. M.U. Khan, S. Li, Q. Wang, Z. Shao, Distributed multirobot formation and tracking control in cluttered environments. ACM Trans. Auton. Adapt. Syst. 11(2), 1–22 (2016)

    Article  Google Scholar 

  15. S. Li, Z. Wang, Y. Li, Using Laplacian eigenmap as heuristic information to solve nonlinear constraints defined on a graph and its application in distributed range-free localization of wireless sensor networks. Neural Process. Lett. 37(3), 411–424 (2013)

    Article  Google Scholar 

  16. L. Jin, S. Li, B. Hu, M. Liu, A survey on projection neural networks and their applications. Appl. Soft Comput. 76, 533–544 (2019)

    Article  Google Scholar 

  17. B. Liao, Q. Xiang, S. Li, Bounded Z-type neurodynamics with limited-time convergence and noise tolerance for calculating time-dependent Lyapunov equation. Neurocomputing 325, 234–241 (2019)

    Article  Google Scholar 

  18. P.S. Stanimirovic, V.N. Katsikis, S. Li, Integration enhanced and noise tolerant ZNN for computing various expressions involving outer inverses. Neurocomputing 329, 129–143 (2019)

    Article  Google Scholar 

  19. Z. Xu, S. Li, X. Zhou, W. Yan, T. Cheng, D. Huang, Dynamic neural networks based kinematic control for redundant manipulators with model uncertainties. Neurocomputing 329, 255–266 (2019)

    Article  Google Scholar 

  20. L. Xiao, K. Li, Z. Tan, Z. Zhang, B. Liao, K. Chen, L. Jin, S. Li, Nonlinear gradient neural network for solving system of linear equations. Inf. Process. Lett. 142, 35–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Chen, S. Li, Q. Wu, Rejecting chaotic disturbances using a super-exponential-zeroing neurodynamic approach for synchronization of chaotic sensor systems. Sensors 19(1), 74 (2019)

    Article  Google Scholar 

  22. Q. Wu, X. Shen, Y. Jin, Z. Chen, S. Li, A.H. Khan, D. Chen, Intelligent beetle antennae search for UAV sensing and avoidance of obstacles. Sensors 19(8), 1758 (2019)

    Article  Google Scholar 

  23. Q. Xiang, B. Liao, L. Xiao, L. Lin, S. Li, Discrete-time noise-tolerant Zhang neural network for dynamic matrix pseudoinversion. Soft Comput. 23(3), 755–766 (2019)

    Article  MATH  Google Scholar 

  24. Z. Zhang, S. Chen, S. Li, Compatible convex-nonconvex constrained QP-based dual neural networks for motion planning of redundant robot manipulators. IEEE Trans. Contr. Syst. Technol. 27(3), 1250–1258 (2019)

    Article  Google Scholar 

  25. Y. Zhang, S. Li, X. Zhou, Recurrent-neural-network-based velocity-level redundancy resolution for manipulators subject to a joint acceleration limit. IEEE Trans. Ind. Electron. 66(5), 3573–3582 (2019)

    Article  Google Scholar 

  26. L. Jin, S. Li, B. Hu, M. Liu, J. Yu, A noise-suppressing neural algorithm for solving the time-varying system of linear equations: a control-based approach. IEEE Trans. Ind. Inf. 15(1), 236–246 (2019)

    Article  Google Scholar 

  27. Y. Li, S. Li, B. Hannaford, A model-based recurrent neural network with randomness for efficient control with applications. IEEE Trans. Ind. Inf. 15(4), 2054–2063 (2019)

    Article  Google Scholar 

  28. L. Xiao, S. Li, F. Lin, Z. Tan, A. H. Khan, Zeroing neural dynamics for control design: Comprehensive analysis on stability, robustness, and convergence speed. IEEE Trans. Ind. Inf. 15(5), 2605–2616 (2019)

    Article  Google Scholar 

  29. S. Muhammad, M.U. Rafique, S. Li, Z. Shao, Q. Wang, X. Liu, Reconfigurable battery systems: a survey on hardware architecture and research challenges. ACM Trans. Des. Autom. Electron. Syst. 24(2), 19:1–19:27 (2019)

    Article  Google Scholar 

  30. S. Li, Z. Shao, Y. Guan, A dynamic neural network approach for efficient control of manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(5), 932–941 (2019)

    Article  Google Scholar 

  31. L. Jin, S. Li, H. Wang, Z. Zhang, Nonconvex projection activated zeroing neurodynamic models for time-varying matrix pseudoinversion with accelerated finite-time convergence. Appl. Soft Comput. 62, 840–850 (2018)

    Article  Google Scholar 

  32. M. Liu, S. Li, X. Li, L. Jin, C. Yi, Z. Huang, Intelligent controllers for multirobot competitive and dynamic tracking. Complexity 2018, 4573631:1–4573631:12 (2018)

    MATH  Google Scholar 

  33. D. Chen, Y. Zhang, S. Li, Zeroing neural-dynamics approach and its robust and rapid solution for parallel robot manipulators against superposition of multiple disturbances. Neurocomputing 275, 845–858 (2018)

    Article  Google Scholar 

  34. L. Jin, S. Li, J. Yu, J. He, Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018)

    Article  Google Scholar 

  35. L. Xiao, S. Li, J. Yang, Z. Zhang, A new recurrent neural network with noise-tolerance and finite-time convergence for dynamic quadratic minimization. Neurocomputing 285, 125–132 (2018)

    Article  Google Scholar 

  36. P.S. Stanimirovic, V.N. Katsikis, S. Li, Hybrid GNN-ZNN models for solving linear matrix equations. Neurocomputing 316, 124–134 (2018)

    Article  Google Scholar 

  37. X. Li, J. Yu, S. Li, L. Ni, A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation. Neurocomputing 317, 70–78 (2018)

    Article  Google Scholar 

  38. L. Xiao, B. Liao, S. Li, K. Chen, Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Netw. 98, 102–113 (2018)

    Article  Google Scholar 

  39. L. Xiao, Z. Zhang, Z. Zhang, W. Li, S. Li, Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation. Neural Netw. 105, 185–196 (2018)

    Article  Google Scholar 

  40. Z. Zhang, Y. Lu, L. Zheng, S. Li, Z. Yu, Y. Li, A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality. IEEE Trans. Autom. Control 63(12), 4110–4125 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Z. Zhang, Y. Lin, S. Li, Y. Li, Z. Yu, Y. Luo, Tricriteria optimization-coordination motion of dual-redundant-robot manipulators for complex path planning. IEEE Trans. Control Syst. Technol. 26(4), 1345–1357 (2018)

    Article  Google Scholar 

  42. X. Luo, M. Zhou, S. Li, Y. Xia, Z. You, Q. Zhu, H. Leung, Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS data. IEEE Trans. Cybern. 48(4), 1216–1228 (2018)

    Article  Google Scholar 

  43. L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, L. Jin, Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator. IEEE Trans. Ind. Inf. 14(1), 98–105 (2018)

    Article  Google Scholar 

  44. L. Jin, S. Li, B. Hu, RNN models for dynamic matrix inversion: a control-theoretical perspective. IEEE Trans. Ind. Inf. 14(1), 189–199 (2018)

    Article  Google Scholar 

  45. X. Luo, M. Zhou, S. Li, M. Shang, An inherently nonnegative latent factor model for high-dimensional and sparse matrices from industrial applications. IEEE Trans. Ind. Inf. 14(5), 2011–2022 (2018)

    Article  Google Scholar 

  46. D. Chen, Y. Zhang, S. Li, Tracking control of robot manipulators with unknown models: a Jacobian-matrix-adaption method. IEEE Trans. Ind. Inf. 14(7), 3044–3053 (2018)

    Article  Google Scholar 

  47. J. Li, Y. Zhang, S. Li, M. Mao, New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans. Ind. Inf. 14(8), 3416–3425 (2018)

    Article  Google Scholar 

  48. S. Li, H. Wang, M.U. Rafique, A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1908–1918 (2018)

    Article  MathSciNet  Google Scholar 

  49. H. Wang, P.X. Liu, S. Li, D. Wang, Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3658–3668 (2018)

    Article  MathSciNet  Google Scholar 

  50. S. Li, M. Zhou, X. Luo, Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 4791–4801 (2018)

    Article  MathSciNet  Google Scholar 

  51. Y. Li, S. Li, B. Hannaford, A novel recurrent neural network for improving redundant manipulator motion planning completeness, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2018), pp. 2956–2961

    Google Scholar 

  52. M.A. Mirza, S. Li, L. Jin, Simultaneous learning and control of parallel Stewart platforms with unknown parameters. Neurocomputing 266, 114–122 (2017)

    Article  Google Scholar 

  53. L. Jin, S. Li, Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints. Neurocomputing 267, 107–113 (2017)

    Article  Google Scholar 

  54. L. Jin, S. Li, B. Liao, Z. Zhang, Zeroing neural networks: a survey. Neurocomputing 267, 597–604 (2017)

    Article  Google Scholar 

  55. L. Jin, Y. Zhang, S. Li, Y. Zhang, Noise-tolerant ZNN models for solving time-varying zero-finding problems: a control-theoretic approach. IEEE Trans. Autom. Control 62(2), 992–997 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Z. You, M. Zhou, X. Luo, S. Li, Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)

    Article  Google Scholar 

  57. L. Jin, S. Li, H. M. La, X. Luo, Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64(6), 4710–4720 (2017)

    Article  Google Scholar 

  58. S. Muhammad, M.U. Rafique, S. Li, Z. Shao, Q. Wang, N. Guan, A robust algorithm for state-of-charge estimation with gain optimization. IEEE Trans. Ind. Inf. 13(6), 2983–2994 (2017)

    Article  Google Scholar 

  59. X. Luo, J. Sun, Z. Wang, S. Li, M. Shang, Symmetric and nonnegative latent factor models for undirected, high-dimensional, and sparse networks in industrial applications. IEEE Trans. Ind. Inf. 13(6), 3098–3107 (2017)

    Article  Google Scholar 

  60. S. Li, Y. Zhang, L. Jin, Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2243–2254 (2017)

    Article  MathSciNet  Google Scholar 

  61. X. Luo, S. Li, Non-negativity constrained missing data estimation for high-dimensional and sparse matrices, in Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE) (IEEE, Piscataway, 2017), pp. 1368–1373

    Google Scholar 

  62. Y. Li, S. Li, D.E. Caballero, M. Miyasaka, A. Lewis, B. Hannaford, Improving control precision and motion adaptiveness for surgical robot with recurrent neural network, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2017), pp. 3538–3543

    Google Scholar 

  63. X. Luo, M. Zhou, M. Shang, S. Li, Y. Xia, A novel approach to extracting non-negative latent factors from non-negative big sparse matrices. IEEE Access 4, 2649–2655 (2016)

    Article  Google Scholar 

  64. M. Mao, J. Li, L. Jin, S. Li, Y. Zhang, Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the presence of bias noises. Neurocomputing 207, 220–230 (2016)

    Article  Google Scholar 

  65. Y. Huang, Z. You, X. Li, X. Chen, P. Hu, S. Li, X. Luo, Construction of reliable protein-protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing 218, 131–138 (2016)

    Article  Google Scholar 

  66. X. Luo, M. Zhou, H. Leung, Y. Xia, Q. Zhu, Z. You, S. Li, An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering. IEEE Trans. Autom. Sci. Eng. 13(1), 333–343 (2016)

    Article  Google Scholar 

  67. S. Li, Z. You, H. Guo, X. Luo, Z. Zhao, Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229–1241 (2016)

    Article  Google Scholar 

  68. L. Jin, Y. Zhang, S. Li, Y. Zhang, Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans. Ind. Electron. 63(11), 6978–6988 (2016)

    Article  Google Scholar 

  69. X. Luo, M. Zhou, S. Li, Z. You, Y. Xia, Q. Zhu, A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 579–592 (2016)

    Article  MathSciNet  Google Scholar 

  70. L. Jin, Y. Zhang, S. Li, Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2615–2627 (2016)

    Article  Google Scholar 

  71. X. Luo, M. Shang, S. Li, Efficient extraction of non-negative latent factors from high-dimensional and sparse matrices in industrial applications, in Proceedings of the IEEE 16th International Conference on Data Mining (ICDM) (IEEE, Piscataway, 2016), pp. 311–319

    Google Scholar 

  72. X. Luo, S. Li, M. Zhou, Regularized extraction of non-negative latent factors from high-dimensional sparse matrices, in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2016), pp. 1221–1226

    Google Scholar 

  73. X. Luo, Z. Ming, Z. You, S. Li, Y. Xia, H. Leung, Improving network topology-based protein interactome mapping via collaborative filtering. Knowl.-Based Syst. 90, 23–32 (2015)

    Article  Google Scholar 

  74. X. Luo, M. Zhou, S. Li, Y. Xia, Z. You, Q. Zhu, H. Leung, An efficient second-order approach to factorize sparse matrices in recommender systems. IEEE Trans. Ind. Inf. 11(4), 946–956 (2015)

    Article  Google Scholar 

  75. L. Wong, Z. You, S. Li, Y. Huang, G. Liu, Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor, in Proceedings of the International Conference on Intelligent Computing ICIC (Springer, Cham, 2015), pp. 713–720

    Google Scholar 

  76. Z. You, J. Yu, L. Zhu, S. Li, Z. Wen, A MapReduce based parallel SVM for large-scale predicting protein-protein interactions. Neurocomputing 145, 37–43 (2014)

    Article  Google Scholar 

  77. Y. Li, S. Li, Q. Song, H. Liu, M.Q.H. Meng, Fast and robust data association using posterior based approximate joint compatibility test. IEEE Trans. Ind. Inf. 10(1), 331–339 (2014)

    Article  Google Scholar 

  78. S. Li, Y. Li, Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans. Cybern. 44(8), 1397–1407 (2014)

    Article  Google Scholar 

  79. Q. Huang, Z. You, S. Li, Z. Zhu, Using Chou’s amphiphilic pseudo-amino acid composition and extreme learning machine for prediction of protein-protein interactions, in Proceedings of the International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2014), pp. 2952–2956

    Google Scholar 

  80. S. Li, Y. Li, Z. Wang, A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw. 39, 27–39 (2013)

    Article  MATH  Google Scholar 

  81. S. Li, B. Liu, Y. Li, Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. (24)(2), 301–309 (2013)

    Google Scholar 

  82. Y. Cao, W. Ren, Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction. Int. J. Control 83(3), 506–515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  83. Y. Liu, S. Li, S. Tong, C.L.P. Chen, Neural approximation-based adaptive control for a class of nonlinear nonstrict feedback discrete-time systems. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1531–1541 (2017)

    Article  MathSciNet  Google Scholar 

  84. Y. Liu, S. Tong, Optimal control-based adaptive NN design for a class of nonlinear discrete-time block-triangular systems. IEEE Trans. Cybern. 46(11), 2670–2680 (2016)

    Article  Google Scholar 

  85. X. Xie, Q. Zhou, D. Yue, H. Li, Relaxed control design of discrete-time Takagi-Sugeno fuzzy systems: an event-triggered real-time scheduling approach. IEEE Trans. Syst. Man Cybern. Syst.. https://doi.org/10.1109/TSMC.2017.2737542

    Article  Google Scholar 

  86. Y. Liu, Y. Gao, S. Tong, C.L.P. Chen, A unified approach to adaptive neural control for nonlinear discrete-time systems with nonlinear dead-zone input. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 139–150 (2016)

    Article  MathSciNet  Google Scholar 

  87. Y. Liu, L. Tang, S. Tong, C.L.P. Chen, D. Li, Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 165–176 (2015)

    Article  MathSciNet  Google Scholar 

  88. R. Olfati-Saber, R.M. Murry, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  89. Y. Zhang, S. Li, Predictive suboptimal consensus of multiagent systems with nonlinear dynamics. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1701–1711 (2017)

    Article  MathSciNet  Google Scholar 

  90. C.L.P. Chen, G.X. Wen, Y.J. Liu, Z. Liu, Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans. Cybern. 46(7), 1591–1601 (2016)

    Article  Google Scholar 

  91. W. Zhang, Y. Tang, T. Huang, A.V. Vasilakos, Consensus of networked Euler-Lagrange systems under time-varying sampled-data control. IEEE Trans. Ind. Inf. 14(2), 535–544 (2018)

    Article  Google Scholar 

  92. Y. Zhang, S. Li, Adaptive near-optimal consensus of high-order nonlinear multi-agent systems with heterogeneity. Automatica 85, 426–432 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  93. L. Moreau, Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  94. Y. Su, J. Huang, Two consensus problems for discrete-time multi-agent systems with switching network topology. Automatica 48(9), 1988–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  95. Y. Wei, G.P. Liu, Consensus tracking of heterogeneous discrete-time networked multiagent systems based on the networked predictive control scheme. IEEE Trans. Cybern. 47(8), 2173–2184 (2017)

    Article  Google Scholar 

  96. P. Lin, Y. Jia, Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 45(9), 2154–2158 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  97. J. Qin, C. Yu, S. Hirche, Stationary consensus of asynchronous discrete-time second-order multi-agent systems under switching topology. IEEE Trans. Ind. Inf. 8(4), 986–994 (2012)

    Article  Google Scholar 

  98. S.M. Dibaji, H. Ishii, Resilient consensus of second-order agent networks: asynchronous update rules with delays. Automatica 81, 123–132 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  99. D. Xie, S. Wang, Consensus of second-order discrete-time multi-agent systems with fixed topology. J. Math. Anal. Appl. (387)(1), 8–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  100. Y. Chen, J. Lü, X. Yu, Z. Lin, Consensus of discrete-time second-order multiagent systems based on infinite products of general stochastic matrices. SIAM J. Control Optim. 51(4), 3274–3301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  101. J. Zhu, Y.P. Tian, J. Kuang, On the general consensus protocol of multi-agent systems with double-integrator dynamics. Linear Algebra Appl. 431(5), 701–715 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  102. F. Sun, Z.H. Guan, X.S. Zhan, F.S. Yuan, Consensus of second-order and high-order discrete-time multi-agent systems with random networks. Nonlinear Anal. Real World Appl. 13(5), 1979–1990 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  103. W. He, J. Cao, Consensus control for high-order multi-agent systems. IET Control Theory Appl. 5(1), 231–238 (2011)

    Article  MathSciNet  Google Scholar 

  104. L. Macellari, Y. Karayiannidis, D.V. Dimarogonas, Multi-agent second order average consensus with prescribed transient behavior. IEEE Trans. Autom. Control 62(10), 5282–5288 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  105. Y. Zhang, S. Li, Perturbing consensus for complexity: a finite-time discrete biased min-consensus under time-delay and asynchronism. Automatica 85, 441–447 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  106. J. Cortés, Distributed algorithms for reaching consensus on general functions. Automatica 44(3), 726–737 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  107. T. Li, M. Fu, L. Xie, J.F. Zhang, Distributed consensus with limited communication data rate. IEEE Trans. Autom. Control 56(2), 279–292 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  108. K. You, L. Xie, Network topology and communication data rate for consensusability of discrete-time multi-agent systems. IEEE Trans. Autom. Control 56(10), 2262–2275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  109. K.S. Narendra, C. Xiang, Adaptive control of discrete-time systems using multiple models. IEEE Trans. Autom. Control 45(9), 1669–1686 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  110. E.A. Khidir, N.A. Mohamed, M.J.M. Nor, M.M. Mustafa, A new concept of a linear smart actuator. Sensors Actuators A 135(1), 244–249 (2007)

    Article  Google Scholar 

  111. H. Wu, D. Sun, Z. Zhou, Model identification of a micro air vehicle in loitering flight based on attitude performance evaluation. IEEE Trans. Robot. 20(4), 702–712 (2004)

    Article  Google Scholar 

  112. I.D. Landau, G. Zito, Digital Control Systems: Design, Identification And Implementation (Springer, New York, 2006)

    Google Scholar 

  113. S. Knorn, Z. Chen, R.H. Middleton, Overview: collective control of multiagent systems. IEEE Trans. Control Netw. Syst. 3(4), 334–347 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  114. H. Yu, X. Xia, Adaptive consensus of multi-agents in networks with jointly connected topologies. Automatica 48(8), 1783–1790 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Li, S. (2020). High-Order Discrete-Time Consensus. In: Machine Behavior Design And Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-3231-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3231-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3230-6

  • Online ISBN: 978-981-15-3231-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics