Skip to main content

Role of Nanotechnology in the Management of Agricultural Pests

  • Chapter
  • First Online:

Abstract

The continuous use of pesticide-mediated insect control has led to the rise in insecticide resistance cases. It has now become a global problem and a matter of serious concern. Therefore, more reliable and advanced methods are urgently required for the control of insect/pests. Nanotechnology, an interdisciplinary field, has revolutionized different sectors of science and technology by introducing nanoparticles. Nanoparticles can be utilized for enhancing the efficacy of insecticides and pesticides in reduced doses. The use of nanotechnology in agriculture is less frequent compared to sectors like medicine and pharmacy. In this chapter, we give a gist of traditional insect/pest control strategies and discuss the potential of nanotechnology as a new tool for insect control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1)

    Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91(1):1–15

    Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica – From medicine to pest control. Parasitol Res 103(2):253–258

    CAS  PubMed  Google Scholar 

  • Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A et al (2018) Mosquito control with green nanopesticides: towards the one health approach? A review of non-target effects. Environ Sci Pollut Res 25(11):10184–10206

    CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano-particles - A recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    PubMed  Google Scholar 

  • Chinnaperumal K, Govindasamy B, Paramasivam D, Dilipkumar A, Dhayalan A, Vadivel A, Sengodan K, Pachiappan P (2018) Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pestic Biochem Physiol 149:26–36

    CAS  PubMed  Google Scholar 

  • Damalas CA (2009) Understanding benefits and risks of pesticide use. Sci Res Essays 4(10):945–949

    Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105

    Google Scholar 

  • Dhaliwal GS, Koul O, Arora R (2004) Integrated pest management: retrospect and prospect. Integrated Pest Management: Potential, Constraints Challenges

    Google Scholar 

  • Dhoke SK, Mahajan P, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7

    Google Scholar 

  • Dimetry NZ, Hussein HM (2016) Role of nanotechnology in agriculture with special reference to pest control. Int J Pharm Tech Res 9(10):121–144

    CAS  Google Scholar 

  • Divya K, Sankar M (2009) Entomopathogenic nematodes in pest management. Indian J Sci Technol 2(7):53–60

    Google Scholar 

  • Dunn DW, Follett PA (2017) The sterile insect technique (SIT) – an introduction. Entomol Exp Appl 163(3):151–154

    Google Scholar 

  • Dziewiecka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA (2016) Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. J Hazard Mater 305:30–40

    CAS  PubMed  Google Scholar 

  • Ehrlich H, Janussen D, Simon P, Bazhenov VV, Shapkin NP, Erler C, Mertig M, Born R, Heinemann S, Hanke T et al (2008) Nanostructural organization of naturally occurring composites-part II: silica-chitin-based biocomposites. J Nanomater 2008:1–8

    Google Scholar 

  • Esquivel DMS (2007) Magnetic nanoparticles in social insects: are they the geomagnetic sensors? Entomological Society of America. Annual Meeting. Monday, December 10, 2007 NO-0574

    Google Scholar 

  • Foldbjerg R, Jiang X, Micləuş T, Chen C, Autrup H, Beer C (2015) Silver nanoparticles – wolves in sheep’s clothing? Toxicol Res (Camb) 4(3):563–575

    CAS  Google Scholar 

  • Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46(3):558–567

    CAS  PubMed  Google Scholar 

  • Fröhlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol 242(3):326–332

    PubMed  Google Scholar 

  • Ga’al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018) Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Physiol 144:49–56

    PubMed  Google Scholar 

  • Gangemi S, Miozzi E, Teodoro M, Briguglio G, De Luca A, Alibrando C, Polito I, Libra M (2016) Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans (review). Mol Med Rep 14(5):4475–4488

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-García CR, Parrón T, Requena M, Alarcón R, Tsatsakis AM, Hernández AF (2016) Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci 145:274–283

    PubMed  Google Scholar 

  • Gorb EV, Gorb SN (2009) Contact mechanics at the insect-plant interface: how do insects stick and how do plants prevent this? Borodich FM (ed.), IUTAM Symposium on scaling in solid mechanics, IUTAM Bookseries, Springer Science and Business Media B.V. pp 243

    Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92(2):83–91

    CAS  Google Scholar 

  • Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94(1):135–155

    Google Scholar 

  • Hendrichs J, Robinson A (2009) Chapter 243 – Sterile Insect Technique A2 - Resh, Vincent H. In Encyclopedia of Insects (2nd Ed)

    Google Scholar 

  • Hokkanen H (1991) Trap cropping in Pest management. Annu Rev Entomol 36(1):119–138

    Google Scholar 

  • Johnson DL, Huang HC, Harper AM (1988) Mortality of grasshoppers (Orthoptera: Acrididae) inoculated with a Canadian isolate of the fungus Verticillium lecanii. J Invertebr Pathol 52(2):335–342

    Google Scholar 

  • Jonsson M, Wratten SD, Landis DA, Gurr GM (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Control 45(2):172–175

    Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867

    CAS  Google Scholar 

  • Kang MA, Seo MJ, Hwang IC, Jang C, Park HJ, Yu YM, Youn YN (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15(4):533–541

    CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Google Scholar 

  • Kookana RS, Boxall ABA, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M et al (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62(19):4227–4240

    CAS  PubMed  Google Scholar 

  • Le Goff G, Giraudo M (2019) Effects of pesticides on the environment and insecticide resistance. In Olfactory concepts of insect control – alternative to insecticides

    Google Scholar 

  • Lees RS, Gilles JR, Hendrichs J, Vreysen MJ, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162

    PubMed  Google Scholar 

  • Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, Ni M, Zhang H, Shen W, Li B (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on Silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. J Chem Ecol 40(8):913–922

    CAS  PubMed  Google Scholar 

  • Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ (2013) Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manag Sci 69(1):104–111

    CAS  PubMed  Google Scholar 

  • Liu Y, Laks P, Heiden P (2003) Nanoparticles for the controlled release of fungicides in wood: soil jar studies using G. Trabeum and T. Versicolor wood decay fungi. Holzforschung 57(2):135–139

    CAS  Google Scholar 

  • Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43(16):6357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8(1):1–16

    Google Scholar 

  • Mommaerts V, Jodko K, Thomassen LCJ, Martens JA, Kirsch-Volders M, Smagghe G (2012) Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6(5):554–561

    CAS  PubMed  Google Scholar 

  • Mu Q, Yu J, McConnachie LA, Kraft JC, Gao Y, Gulati GK, Ho RJY (2018) Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 26(5–6):435–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Heal 4

    Google Scholar 

  • Nikolouli K, Colinet H, Renault D, Enriquez T, Mouton L, Gibert P, Sassu F, Cáceres C, Stauffer C, Pereira R et al (2018) Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J Pest Sci 91(2):489–503

    Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537

    PubMed  PubMed Central  Google Scholar 

  • Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzym Microb Technol 92:18–25

    CAS  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M d P, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33

    Google Scholar 

  • Philbrook NA, Winn LM, Afrooz ARMN, Saleh NB, Walker VK (2011) The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257(3):429–436

    CAS  PubMed  Google Scholar 

  • Santo-Orihuela PL, Foglia ML, Targovnik AM, Miranda MV, Desimone MF (2016) Nanotoxicological effects of SiO 2 nanoparticles on Spodoptera frugiperda Sf9 cells. Curr Pharm Biotechnol 17(5):465–470

    CAS  PubMed  Google Scholar 

  • Scott MJ, Concha C, Welch JB, Phillips PL, Skoda SR (2017) Review of research advances in the screwworm eradication program over the past 25 years. Entomol Exp Appl 164(3):226–236

    Google Scholar 

  • Shah MA, Wani SH (2016) Nanotechnology and insecticidal formulations. J Food Bioeng Nanoprocessing 1(3):285–310

    Google Scholar 

  • Silva MDS, Cocenza DS, De Melo NFS, Grillo R, Rosa AH, Fraceto LF (2010) Alginate nanoparticles as a controlled release system for clomazone herbicide. Quim Nova 33(9)

    Google Scholar 

  • Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sooresh A, Kwon H, Taylor R, Pietrantonio P, Pine M, Sayes CM (2011) Surface functionalization of silver nanoparticles: novel applications for insect vector control. ACS Appl Mater Interfaces 3(10):3779–3787

    CAS  PubMed  Google Scholar 

  • Stadler T, López García GP, Gitto JG, Buteler M (2017) Nanostructured alumina: biocidal properties and mechanism of action of a novel insecticide powder. Bull Insectol 70(1):17–26

    Google Scholar 

  • Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35(10):926–935

    CAS  PubMed  Google Scholar 

  • Thompson JM, Chisholm BJ, Bezbaruah AN (2010) Reductive dechlorination of chloroacetanilide herbicide (Alachlor) using zero-valent iron nanoparticles. Environ Eng Sci 27(3):227–232

    CAS  Google Scholar 

  • Vincent C, Hallman G, Panneton B, Fleurat-Lessard F (2003) Management of agricultural insects with physical control methods. Annu Rev Entomol 48:261–281

    CAS  PubMed  Google Scholar 

  • Weisz R, Smilowitz Z, Christ B (1994) Distance, rotation, and border crops affect Colorado potato beetle (Coleoptera: Chrysomelidae) colonization and population density and early blight (Alternaria solani) severity in rotated potato fields. J Econ Entomol 87(3):723–729

    Google Scholar 

  • Wilke ABB, Marrelli MT (2012) Genetic control of mosquitoes: population suppression strategies. Rev Inst Med Trop Sao Paulo 54(5):287–292

    PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J AgricFood Chem 11 57(21):10156–10162

    Google Scholar 

  • Yin Y-h, Guo Q-m, Han Y, Wang L-j, Wan S-q (2012) Preparation, characterization and Nematicidal activity of Lansiumamide B Nano-capsules. J Integr Agric 11(7):1151–1158

    Google Scholar 

  • Zhang G, Zhang J, Xie G, Liu Z, Shao H (2006) Cicada wings: a stamp from nature for nanoimprint lithography. Small 2(12):1440–1443

    CAS  PubMed  Google Scholar 

  • Zhang D, Zheng X, Xi Z, Bourtzis K, Gilles JRL (2015) Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLoS One 10(4):e0121126

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayendra Nath Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, N., Meghvanshi, K., Shukla, J.N. (2020). Role of Nanotechnology in the Management of Agricultural Pests. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_6

Download citation

Publish with us

Policies and ethics