Skip to main content

Biogenic Synthesis of Metal Nanoparticles by Plants

  • Chapter
  • First Online:

Abstract

Progressing in time proved development in technology that showed the ability of metals of nanoscale to perform specific utilities better than the bulk form of metals. Nanotechnology by means of specific traits of nanoparticles can be an identical valuable knowledge in various industry and science divisions. The noble metals like silver, gold, platinum, palladium, copper, zinc, selenium, titanium, and iron were used in synthesis of particles of nano-size. Chemical, physical, and biological ways have been used toward synthesis of various types of metal nanoparticles. The extensive potential applications of these nanoparticles made the green (biological or biogenic) synthesis by using bacteria, algae, actinomycetes, fungi, and plants. In the plant-based synthesis, several extracts (leaves, bark, stem, shoots, seeds, latex, secondary metabolites, roots, twigs, peel, fruit, seedlings, essential oils, tissue cultures, gum) are used. Therefore, the current review especially focuses on synthesis particularly plant-intermediated biosynthesis of metal nanoparticles and their classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abolghasemi R, Haghighi M, Solgi M, Mobinikhaledi A (2019) Rapid synthesis of ZnO nanoparticles by waste thyme (Thymus vulgaris L.). Int J Environ Sci Technol 16:6985–6990. https://doi.org/10.1007/s13762-018-2112-1

    Article  CAS  Google Scholar 

  • Ahamed M, Alsalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clin Chem Acta 411:1841–1848

    CAS  Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B: Bionterfaces 103:283–287

    CAS  Google Scholar 

  • Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 3:111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel rout for the synthesis of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 368:58–63

    CAS  Google Scholar 

  • Baskar G, Chandhuru J, Sheraz Fahad K, Praveen AS (2013) Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian J Pharm Technol 3:142–146

    Google Scholar 

  • Binupriya AR, Sathishkumar M, Yun SI (2010) Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Ind Eng Chem Res 49:852–858

    CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583

    CAS  PubMed  Google Scholar 

  • Duan H, Wand D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    CAS  PubMed  Google Scholar 

  • Dubey SP, Lahtineb M, Sillanpaa M (2010) Green synthesis and characterization of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physiochem Eng Asp 364:34–41

    CAS  Google Scholar 

  • Elango G, Roopan SM (2015) Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 139:367–373

    CAS  PubMed  Google Scholar 

  • El-Kassas HY, El-Sheekh MM (2014) Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev 15:4311–4317

    PubMed  Google Scholar 

  • Haleemkhan AA, Naseem, Vidya Vardhini B (2015) Synthesis of nanoparticles from plant extracts. Int J Mod Chem Appl Sci 2(3):195–203

    Google Scholar 

  • Hong SJ, Han JI (2006) Synthesis and characterization of indium tin oxide (ITO) nanoparticle using gas evaporation process. J Electroceram 17:821–826

    CAS  Google Scholar 

  • Hongwang Z, Swihart MT (2007) Synthesis of tellurium dioxide nanoparticles by spray pyrolysis. Chem Mater 19:1290–1301

    Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67:1003–1006

    CAS  PubMed  Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain D, Kumar Daima H, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig Nanomater Biostruct 4(3):557–563

    Google Scholar 

  • Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK (2014) Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol 24:522–533

    CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B: Biointerfaces 73:219–223

    CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K (2011) Green fruit of chili (capsicum annum L.) synthesizes nano silver! Dig J Nanomater Biostruct 6(4):1717–1723

    Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanoparticles by Bacillus licheniformis. Colloids Surf B: Biointerfaces 65:150–153

    CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Deepak VS, Pandian RK, Gurunathan S (2009) Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour Technol 100:5356–5358

    CAS  PubMed  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Bionterfaces 71:133–137

    CAS  Google Scholar 

  • Kaushik N, Thakkar MS, Snehit S, Mhatre MS, Rasesh Y, Parikh MS (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Google Scholar 

  • Khodashenas B, Ghorbani HR (2014) Synthesis of copper nanoparticles: an overview of the various methods. Korean J Chem Eng 31:1105–1109

    CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    CAS  PubMed  Google Scholar 

  • Kora AJ, Beedu SR, Jayaraman A (2012) Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Lett 2:17

    PubMed  PubMed Central  Google Scholar 

  • Korbekandi H, Iravani S, Abbass Hashim A (eds) (2015) Silver nanoparticles, nanotechnology and nanomaterials, the delivery of nanoparticles, ISBN 978-953-51-0615-9

    Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica extracts and its antimicrobial activity against water pathogens. Colloid Surf B: Biointerfaces 76:50–56

    CAS  PubMed  Google Scholar 

  • Lombardi AT, Garcia O Jr (1999) An evaluation into the potential of biological processing for the removal of metals from sewage sludges. Crit Rev Microbiol 25:275–288

    CAS  PubMed  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:35–44

    CAS  Google Scholar 

  • Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab J Chem 5:397–417

    CAS  Google Scholar 

  • Mallick K, Witcomb MJ, Scurell MS (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Mater Sci 39:4459–4463

    CAS  Google Scholar 

  • Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla-Gullón J, Cabrera CR, Feliu JM (2014) Synthesis of Pt nanoparticles in water-in-oil microemulsion: effect of HCl on their surface structure. J Am Chem Soc 136:1280–1283

    PubMed  Google Scholar 

  • McWilliams A (2016) The maturing nanotechnology market: products and applications. NAN031G, Global Markets, BBC Research Report. Prabhat

    Google Scholar 

  • Merga G, Wilson R, Lynn G, Milosavljevic B, Meisel D (2007) Redox catalysis on naked silver nanoparticles. J Phys Chem C 111:12220–12226

    CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI (2001) Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    CAS  Google Scholar 

  • Mukhopadhay SS (2014) Nanotechnology in agriculture: prospects and constrains. Nanotechnol Sci Appl 7:63–71

    Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010a) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010b) Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater Charact 61(11):1232–1238

    CAS  Google Scholar 

  • Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:1–7. https://doi.org/10.1155/2015/912342

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM (2015) Green synthesis of copper nano-particles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci 457:141–147

    CAS  PubMed  Google Scholar 

  • Nasrollahzadeh M, Sajadib SM, Khalajc M (2014) Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol. RSC Adv 4:47313–47318

    CAS  Google Scholar 

  • Noruzi M (2015) Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng 38:1–14

    CAS  PubMed  Google Scholar 

  • Phadke M, Patel J (2012) Biological synthesis of silver nano particles using Pseudomonas aeruginosa. J Pure Appl Microbiol 66:1917–1924

    Google Scholar 

  • Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78:899–904

    PubMed  Google Scholar 

  • Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M (2015) Synthesis of silver nanoparticles from Azadirachta indica–a most effective method for mosquito control. Environ Sci Pollut Res Int 22:2956–2963

    CAS  PubMed  Google Scholar 

  • Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P (2014) Microwavemediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against. Appl Biochem Biotechnol 174(8):2777–2790

    CAS  PubMed  Google Scholar 

  • Rai K, Kumar V, Lee SS, Raza N, Kim KH, Ok YS, Tsang DCW (2018) Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ Int 119:1–19

    CAS  PubMed  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruc Chem 3:44

    Google Scholar 

  • Ravindra BK, Rajasab AHA (2013) A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int J Pharm Pharm Sci 6:372–376

    Google Scholar 

  • Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2001) Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor. Langmuir 17:574–577

    CAS  Google Scholar 

  • Rodríguez-Sánchez L, Blanco MC, Lpez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104(41):9683–9688

    Google Scholar 

  • Sadeghi B, Rostami A, Momeni SS (2015) Facile green synthesis of silver nano-particles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 134:326–332

    CAS  PubMed  Google Scholar 

  • Sangeetha N, Priyenka Devi KS, Saravanan K (2013) Synthesis and characterization of silver nanoparticles using the marine algae Ulva lactuca. Pollut Res 32:135–139

    CAS  Google Scholar 

  • Schrofel A, Kratosova G, Safarik I, Safarikova M, Raska I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles – a review. Acta Biomater 10:4023–4042

    CAS  PubMed  Google Scholar 

  • Shaik MR, Khan M, Kuniyil M, Al-Warthan A, Alkhathlan HZ, Siddiqui MRH, Shaik JP, Ahamed A, Mahmood A, Khan M, Adil SF (2018) Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10:913. https://doi.org/10.3390/su10040913

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19(6):1627–1631

    CAS  PubMed  Google Scholar 

  • Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31:865–873

    CAS  PubMed  Google Scholar 

  • Simeonidis K, Mourdikoudis S, Moulla M, Tsiaoussis I, Martinez-Boubeta C, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2007) Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. J Magn Magn Mater 316:1–4

    Google Scholar 

  • Singh P, Kim YJ, Yang DC (2015) A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol 44:1949–1957. https://doi.org/10.3109/21691401.2015.1115410

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):589–599

    Google Scholar 

  • Solgi M (2012) Application of nanotechnology and “Smart Packaging” in marketing and postharvest of cut flowers. First nanotechnology and its application in agriculture and natural resources conference. May 15–6, Karaj, Iran

    Google Scholar 

  • Solgi M (2014) Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiol Mol Biol Plants 20(30):279–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solgi M, Taghizadeh M (2012) Silver nanoparticles ecofriendly synthesis by two medicinal plants. Int J Nanomater Biostruct 2(4):60–64

    Google Scholar 

  • Solgi M, Kafi M, Taghavi TS, Naderi R (2009) Essential oils and silver nanoparticles (SNP) as novel agents to extend vase life of gerbera (Gerbera jamesonii cv. ‘Dune’). Postharvest Biol Technol 53:155–158

    CAS  Google Scholar 

  • Solgi M, Kafi M, Taghavi TS, Naderi R, Eyre J, Joyce DC (2011) Effects of silver nanoparticles (SNP) on Gerbera jamesonii cut flowers. Int J Postharvest Innov 2(3):274–285

    Google Scholar 

  • Starowicz M, Stypuła B, Banas J (2006) Electrochemical synthesis of silver nanoparticles. Electrochem Commun 8:227–230

    CAS  Google Scholar 

  • Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 51:393–399

    CAS  PubMed  Google Scholar 

  • Tan Y, Dai Y, Li Y, Zhua D (2003) Preparation of gold platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem A 13:1069–1075

    CAS  Google Scholar 

  • Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5:4866–4883

    CAS  Google Scholar 

  • Vijayaraghavan K, Balasubramanian R (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manag 160:283–296

    CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    CAS  PubMed  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120

    CAS  PubMed  Google Scholar 

  • Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan SM, Rahuman AA, Singh N (2015) Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother 59:4782–4799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou GJ, Li SH, Zhang YC, Fu YZ (2014) Biosynthesis of CdS nanoparticles in banana peel extract. J Nanosci Nanotechnol 14:4437–4442

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Solgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solgi, M., Taghizadeh, M. (2020). Biogenic Synthesis of Metal Nanoparticles by Plants. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_27

Download citation

Publish with us

Policies and ethics