Skip to main content

Site of Ketamine Action on the NMDA Receptor

  • Chapter
  • First Online:
Ketamine
  • 923 Accesses

Abstract

Ketamine, an antagonist of N-methyl-d-aspartate receptors (NMDARs), produces rapid and sustained reduction of symptoms in patients with treatment-resistant depression. NMDARs are critical for neural network formation, neuronal plasticity, higher brain functions, and pathophysiology of neurodegenerative and psychiatric disorders. Recent studies have identified functional domains of diverse NMDAR subunits, as well as the site of ketamine action on NMDARs. The site of ketamine action overlaps with the site of physiological voltage-dependent Mg2+ block. Furthermore, different NMDAR GluN2 subunits contribute differentially to the sensitivity of ketamine. High-resolution analyses of the structure of the action site of ketamine on NMDARs and the mechanisms of ketamine action in vivo will contribute to the development of novel and effective antidepressant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

APV:

d-2-Amino-5-phosphono-valerate

ATD:

Amino-terminal domain

CNS:

Central nervous system

CTD:

Carboxy-terminal domain

GluR:

Glutamate receptor

KO:

Gene knockout

LBD:

Ligand-binding domain

LTP:

Long-term potentiation

NMDA:

N-methyl-d-aspartate

PCP:

Phencyclidine

PFC:

Prefrontal cortex

TMD:

Transmembrane domain

References

  • Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu AC, Tsai GE, Ma CL, Ehmsen JT, Musutafa AK, Han L, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14:719–727

    Article  CAS  PubMed  Google Scholar 

  • Bergman SA (1999) Ketamine: review of its pharmacology and its use in pediatric anesthesia. Anesth Prog 46:10–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Burnashev N, Schoepfer R, Monyer H, Ruppersberg JP, Günther W, Seeburg PH, Sakmann B (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257:1415–1419

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shu S, Bayliss DA (2009) HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 29:600–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15:6498–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Hu S, Hu H (2019) Lateral habenular burst firing as a target of the rapid antidepressant effects of ketamine. Trends Neurosci 42:179–191

    Article  CAS  PubMed  Google Scholar 

  • Curtis DR, Watkins JC (1963) Acidic amino acids with strong excitatory actions on mammalian neurones. J Physiol 166:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Simoni S, Schwarz AJ, O’Daly OG, Marquand AF, Brittain C, Gonzales G, Stephenson S, Williams SC, Mehta MA (2013) Test-retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers. Neuroimage 64:75–90

    Article  PubMed  Google Scholar 

  • Domino EF, Domino SE, Smith RE, Domino LE, Goulet JR, Domino KE, Zsigmond EK (1984) Ketamine kinetics in unmedicated and diazepam-premedicated subjects. Clin Pharmacol Ther 36:645–653

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Zhang JC, Ren Q, Ma M, Qu Y, Zhang K, Yao W, Ishima T, Mori H, Hashimoto K (2018) Deletion of serine racemase confers D-serine -dependent resilience to chronic social defeat stress. Neurochem Int 116:43–51

    Article  CAS  PubMed  Google Scholar 

  • Forrest D, Yuzaki M, Soares HD, Ng L, Luk DC, Sheng M, Stewart CL, Morgan JI, Connor JA, Curran T (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13:325–338

    Article  CAS  PubMed  Google Scholar 

  • Francija E, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M (2019) Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behav Brain Res 359:550–559

    Article  CAS  PubMed  Google Scholar 

  • Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438:185–192

    Article  CAS  PubMed  Google Scholar 

  • Garfield JM, Garfield FB, Stone JG, Hopkins D, Johns LA (1972) A comparison of psychologic responses to ketamine and thiopental-nitrous oxide-halothane anesthesia. Anesthesiology 36:329–338

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Pulido OM, Mueller RW, McGuire PF (1998) Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Res Bull 46:429–434

    Article  CAS  PubMed  Google Scholar 

  • Graifenstein FF, Devault M, Yoshitake J, Gejewski JE (1958) A study of a 1-aryl cyclo hexyl amine for anesthesia. Anesth Analg 37:283–294

    Google Scholar 

  • Hagino Y, Kasai S, Han W, Yamamoto H, Nabeshima T, Mishina M, Ikeda K (2010) Essential role of NMDA receptor channel ε4 subunit (GluN2D) in the effects of phencyclidine, but not methamphetamine. PLoS One 5:e13722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K (2019) Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective. Psychiatry Clin Neurosci. https://doi.org/10.1111/pcn.12902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free D-serine in rat brain. FEBS Lett 296:33–36

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Thomas GM, Huganir RL (2009) Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron 64:213–226. https://doi.org/10.1016/j.neuron.2009.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Kawaji K, Sun L, Zhang X, Koyano K, Yokoyama T, Kohsaka S, Inoue K, Nakanishi H (2011) Microglial Ca2+-activated K+ channels are possible molecular targets for the analgesic effects of S-ketamine on neuropathic pain. J Neurosci 31:17370–17382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman BG, Gupta SC, Stairs DJ, Buonanno A, Dravid SM (2011) Behavioral analysis of NR2C knockout mouse reveals deficit in acquisition of conditioned fear and working memory. Neurobiol Learn Mem 95:404–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10:943–954

    Article  CAS  PubMed  Google Scholar 

  • Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669

    Article  CAS  PubMed  Google Scholar 

  • Ide S, Ikekubo Y, Mishina M, Hashimoto K, Ikeda K (2017) Role of NMDA receptor GluN2D subunit in the antidepressant effects of enantiomers of ketamine. J Pharmacol Sci 135:138–140

    Article  CAS  PubMed  Google Scholar 

  • Ide S, Ikekubo Y, Mishina M, Hashimoto K, Ikeda K (2019) Cognitive impairment that is induced by (R)-ketamine is abolished in NMDA GluN2D receptor subunit knockout mice. Int J Neuropsychopharmacol 22:449–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoue Y, Mishina M (1992) Cloning and expression of the epsilon 4 subunit of the NMDA receptor channel. FEBS Lett 313:34–38

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Araki K, Takayama C, Inoue Y, Yagi T, Aizawa S, Mishina M (1995) Reduced spontaneous activity of mice defective in the epsilon 4 subunit of the NMDA receptor channel. Brain Res Mol Brain Res 33:61–71

    Article  CAS  PubMed  Google Scholar 

  • Inoue R, Hashimoto K, Harai T, Mori H (2008) NMDA- and beta-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 28:14486–14491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268:2836–2843

    CAS  PubMed  Google Scholar 

  • Iwasato T, Datwani A, Wolf AM, Nishiyama H, Taguchi Y, Tonegawa S, Knöpfel T, Erzurumlu RS, Itohara S (2000) Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406:726–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone M, Evans V, Baigel S (1959) Sernyl (CI-395) in clinical anaesthesia. Br J Anaesth 31:433–439

    Article  CAS  PubMed  Google Scholar 

  • Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344:992–997. https://doi.org/10.1126/science.1251915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karakas E, Simorowski N, Furukawa H (2009) Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 28:3910–3920. https://doi.org/10.1038/emboj.2009.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi K, Masuko T, Nguyen CD, Kuno T, Tanaka I, Igarashi K, Williams K (2002) Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol Pharmacol 61:533–545

    Article  CAS  PubMed  Google Scholar 

  • Kehrer C, Maziashvili N, Duglandze T, Gloveli T (2008) Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front Mol Neurosci 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishimoto Y, Kawahara S, Mori H, Mishina M, Kirino Y (2001) Long-trace interval eyeblink conditioning is impaired in mutant mice lacking the NMDA receptor subunit epsilon 1. Eur J Neurosci 13:1221–1227

    Article  CAS  PubMed  Google Scholar 

  • Kiyama Y, Manabe T, Sakimura K, Kawakami F, Mori H, Mishina M (1998) Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilon1 subunit. J Neurosci 18:6704–6712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837

    Article  CAS  PubMed  Google Scholar 

  • Kohrs R, Durieux ME (1998) Ketamine: teaching an old drug new tricks. Anesth Analg 87:1186–1193

    CAS  PubMed  Google Scholar 

  • Kotermanski SE, Johnson JW (2009) Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci 29:2774–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358:36–41

    Article  CAS  PubMed  Google Scholar 

  • Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T, Aizawa S, Arakawa M, Takahashi T, Nakamura Y, Mori H, Mishina M (1996) Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16:333–344

    Article  CAS  PubMed  Google Scholar 

  • Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426

    Article  CAS  PubMed  Google Scholar 

  • Laurie DJ, Seeburg PH (1994) Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci 14:3180–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Lü W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511:191–197. https://doi.org/10.1038/nature13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Hanahan D (2013) Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell 153:86–100. https://doi.org/10.1016/j.cell.2013.02.051

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Erzurumlu RS, Chen C, Jhaveri S, Tonegawa S (1994) Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76:427–437

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Clark S, Lewis DV, Wilson WA (2002) NMDA receptor antagonists disinhibit rat posterior cingulate and retrosplenial cortices: a potential mechanism of neurotoxicity. J Neurosci 22:3070–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Du J, Goehring A, Gouaux E (2017) Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355:1282. https://doi.org/10.1126/science.aal3729

    Article  CAS  Google Scholar 

  • Marquard J, Otter S, Welters A, Stirban A, Fischer A, Eglinger J, Herebian D, Kletke O, Klemen MS, Stožer A, Wnendt S, Piemonti L, Köhler M, Ferrer J, Thorens B, Schliess F, Rupnik MS, Heise T, Berggren PO, Klöcker N, Meissner T, Mayatepek E, Eberhard D, Kragl M, Lammert E (2015) Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med 21:363–372. https://doi.org/10.1038/nm.3822

    Article  CAS  PubMed  Google Scholar 

  • Martin LL, Bouchal RL, Smith DJ (1982) Ketamine inhibits serotonin uptake in vivo. Neuropharmacology 21:113–118

    Article  CAS  PubMed  Google Scholar 

  • Matsuda K, Kamiya Y, Matsuda S, Yuzaki M (2002) Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Brain Res Mol Brain Res 100:43–52

    Article  CAS  PubMed  Google Scholar 

  • McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996) Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74

    Article  CAS  PubMed  Google Scholar 

  • Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, Hall BJ (2014) GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. eLife 3:e03581

    Google Scholar 

  • Miller OH, Moran JT, Hall BJ (2016) Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: direct inhibition and disinhibition. Neuropharmacology 100:17–26

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T (2001) Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J Neurosci 21:750–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T (2002) Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci 22:2335–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    Article  CAS  PubMed  Google Scholar 

  • Morgan CJ, Muetzelfeldt L, Curran HV (2009) Ketamine use, cognition and psychological wellbeing: a comparison of frequent, infrequent and ex-users with polydrug and non-using controls. Addiction 104:77–87

    Article  PubMed  Google Scholar 

  • Mori H, Masaki H, Yamakura T, Mishina M (1992) Identification by mutagenesis of a Mg2+-block site of the NMDA receptor channel. Nature 358:673–675

    Article  CAS  PubMed  Google Scholar 

  • Moriyama Y, Hayashi M (2003) Glutamate-mediated signaling in the islets of Langerhans: a thread entangled. Trends Pharmacol Sci 24:511–517

    Article  CAS  PubMed  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37

    Article  CAS  PubMed  Google Scholar 

  • Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774–776

    Article  CAS  PubMed  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 97:4926–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothet JP, Le Bail M, Billard JM (2015) Time and space profiling of NMDA receptor co-agonist functions. J Neurochem 135:210–225. https://doi.org/10.1111/jnc.13204

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    Article  CAS  PubMed  Google Scholar 

  • Otsu Y, Darcq E, Pietrajtis K, Mátyás F, Schwartz E, Bessaih T, Abi Gerges S, Rousseau CV, Grand T, Dieudonné S, Paoletti P, Acsády L, Agulhon C, Kieffer BL, Diana MA (2019) Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula. Science 366:250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrenko AB, Yamakura T, Fujiwara N, Askalany AR, Baba H, Sakimura K (2004) Reduced sensitivity to ketamine and pentobarbital in mice lacking the N-methyl-D-aspartate receptor GluRepsilon1 subunit. Anesth Analg 99:1136–1149

    Article  CAS  PubMed  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR∗D report. Am J Psychiatry 163(11):1905–1917

    Article  PubMed  Google Scholar 

  • Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H, Mishina M (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373:151–155

    Article  CAS  PubMed  Google Scholar 

  • Salussolia CL, Prodromou ML, Borker P, Wollmuth LP (2011) Arrangement of subunits in functional NMDA receptors. J Neurosci 31:11295–11304. https://doi.org/10.1523/JNEUROSCI.5612-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapkota K, Mao Z, Synowicki P, Lieber D, Liu M, Ikezu T, Gautam V, Monaghan DT (2016) GluN2D N-Methyl-d-Aspartate receptor subunit contribution to the stimulation of brain activity and gamma oscillations by ketamine: implications for schizophrenia. J Pharmacol Exp Ther 356:702–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368:144–147

    Article  CAS  PubMed  Google Scholar 

  • Smothers CT, Woodward JJ (2007) Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits. J Pharmacol Exp Ther 322:739–748

    Article  CAS  PubMed  Google Scholar 

  • Song X, Jensen MQ, Jogini V, Stein RA, Lee CH, Mchaourab HS, Shaw DE, Gouaux E (2018) Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature 556:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O’Hara PJ, Heinemann SF (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15:6509–6520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 185:826–832

    Article  CAS  PubMed  Google Scholar 

  • Szczesniak AM, Gilbert RW, Mukhida M, Anderson GI (2005) Mechanical loading modulates glutamate receptor subunit expression in bone. Bone 37:63–73

    Article  CAS  PubMed  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496. https://doi.org/10.1124/pr.109.002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Vissel B, Krupp JJ, Heinemann SF, Westbrook GL (2001) A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci 4:587–596

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Inoue Y, Sakimura K, Mishina M (1992) Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3:1138–1140

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Inoue Y, Sakimura K, Mishina M (1993) Distinct distributions of five N-methyl-D-aspartate receptor channel subunit mRNAs in the forebrain. J Comp Neurol 338:377–390

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A 96:13409–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HK, Liu XB, Matos MF, Chan SF, Pérez-Otaño I, Boysen M, Cui J, Nakanishi N, Trimmer JS, Jones EG, Lipton SA, Sucher NJ (2002) Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J Comp Neurol 450:303–317

    Article  CAS  PubMed  Google Scholar 

  • Yamakage M, Hirshman CA, Croxton TL (1995) Inhibitory effects of thiopental, ketamine and Propofol on voltage-dependent Ca2+ channels in porcine tracheal smooth muscle cells. Anesthesiology 83:1274–1282

    Article  CAS  PubMed  Google Scholar 

  • Yamakura T, Mori H, Masaki H, Shimoji K, Mishina M (1993) Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport 4:687–690

    Article  CAS  PubMed  Google Scholar 

  • Yamakura T, Askalany AR, Petrenko AB, Kohno T, Baba H, Sakimura K (2005) The NR3B subunit does not alter the anesthetic sensitivities of recombinant N-methyl-D-aspartate receptors. Anaesth Analg 100:1687–1692

    Article  CAS  Google Scholar 

  • Yamamoto H, Kamegaya E, Sawada W, Hasegawa R, Yamamoto T, Hagino Y, Takamatsu Y, Imai K, Koga H, Mishina M, Ikeda K (2013) Involvement of the N-methyl-D-aspartate receptor GluN2D subunit in phencyclidine-induced motor impairment, gene expression, and increased Fos immunoreactivity. Mol Brain 6:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto T, Nakayama T, Yamaguchi J, Matsuzawa M, Mishina M, Ikeda K, Yamamoto H (2016) Role of the NMDA receptor GluN2D subunit in the expression of ketamine-induced behavioral sensitization and region-specific activation of neuronal nitric oxide synthase. Neurosci Lett 610:48–53

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki M, Okada R, Takasaki C, Toki S, Fukaya M, Matsume R, Sakimura K, Mishina M, Shirakawa T, Watanabe M (2014) Opposing role of NMDA receptor GluN2B and GluN2D in somatosensory development and maturation. J Neurosci 34:11534–11548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki M, Mori H, Araki K, Mori KJ, Mishina M (1992) Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett 300:39–45

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Qu Y, Abe M, Nozawa D, Chaki S, Hashimoto K (2017) (R)-ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine. Biol Psychiatry 82:e43–e44

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF (2009) Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci 29:12045–12058. https://doi.org/10.1523/JNEUROSCI.1365-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J (1995) Glycine transporters are differentially expressed among CNS cells. J Neurosci 15:3952–3969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

  • Zhang XM, Yan XY, Zhang B, Yang Q, Ye M, Cao W, Qiang WB, Zhu LJ, Du YL, Xu XX, Wang JS, Xu F, Lu W, Qiu S, Yang W, Luo JH (2015) Activity-induced synaptic delivery of the GluN2A-containing NMDA receptor is dependent on endoplasmic reticulum chaperone Bip and involved in fear memory. Cell Res 25:818–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong J, Russell SL, Pritchett DB, Molinoff PB, Williams K (1994) Expression of mRNAs encoding subunits of the N-methyl-D-aspartate receptor in cultured cortical neurons. Mol Pharmacol 45:846–853

    CAS  PubMed  Google Scholar 

  • Zhou Q, Sheng M (2013) NMDA receptors in nervous system diseases. Neuropharmacology 74:69–75

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Douglas JE, Kumar NN, Shu S, Bayliss DA, Chen X (2013) Forebrain HCN1 channels contribute to hypnotic actions of ketamine. Anesthesiology 118:785–795

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Hironori Izumi for the preparation of the figures. Parts of this work were supported by a Grant from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (KAKENHI, Grant No. 18K06888).

Conflict of interest: The author declares no conflicts of interest with the content of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mori, H. (2020). Site of Ketamine Action on the NMDA Receptor. In: Hashimoto, K., Ide, S., Ikeda, K. (eds) Ketamine. Springer, Singapore. https://doi.org/10.1007/978-981-15-2902-3_4

Download citation

Publish with us

Policies and ethics