Skip to main content

Research Status and Development

  • Chapter
  • First Online:
Book cover Impedance Source Inverters

Abstract

Significant developments on highly performance, highly reliable and highly efficient power electrical inverters are underway for renewable energy and other industrial occasions. This chapter introduces the background of renewable energy and traditional source inverters which are widely applied in solar PV and wind power. Then current research status and advanced technologies related to impedance source inverters are presented, including the concepts, classification, and future trends as well as the advantages compared with traditional source inverters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.G. y Garcia, B.A.B. Olvera, The importance of increasing actual INDCs’ ambitions to meet the paris agreement temperature targets: an innovative fuzzy logic approach to temperature control and climate assessment using FACTS, in 2016 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), Lisbon (2016), pp. 1–5

    Google Scholar 

  2. REN21, 2017, Renewables Global Futures Report: great debates towards 100% renewable energy, Paris, REN21 Secretariat (2017)

    Google Scholar 

  3. M.P. Evans, S.H. Tindemans, D. Angeli, A graphical measure of aggregate flexibility for energy-constrained distributed resources, in IEEE Transactions on Smart Grid

    Google Scholar 

  4. H.R. Baghaee, M. Mirsalim, G.B. Gharehpetian, H.A. Talebi, A decentralized power management and sliding mode control strategy for hybrid AC/DC microgrids including renewable energy resources, in IEEE Transactions on Industrial Informatics

    Google Scholar 

  5. REN21, 2018, Renewables 2018: Global Status Report, Paris, REN21 Secretariat (2018)

    Google Scholar 

  6. F.E. Tahiri, K. Chikh, M. Khafallah, A. Saad, D. Breuil, Modeling and performance analysis of a solar PV power system under irradiation and load variations, in 2017 14th International Multi-conference on Systems, Signals & Devices (SSD), Marrakech (2017), pp. 234–238

    Google Scholar 

  7. E. Amina, K.M. Shafeeque, Single stage transformer less reconfigurable inverter for PV applications, in 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore (2018), pp. 388–392

    Google Scholar 

  8. D. Jain, U.K. Kalla, Anti-hebbian control algorithm for three-phase inverter in grid connected solar PV system, 2016 IEEE 7th Power India International Conference (PIICON), Bikaner (2016), pp. 1–5

    Google Scholar 

  9. A.K. Gupta, V. Pawar, M.S. Joshi, V. Agarwal, D. Chandran, A solar PV retrofit solution for residential battery inverters, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC (2017), pp. 2986–2990

    Google Scholar 

  10. P. Dinesh, B. Kowshick, P.P. Raghav, R.K. Govindarajan, G.S. Ilango, Solar power based intelligent battery charging system compatible with existing home inverters, 2013 Texas Instruments India Educators’ Conference, Bangalore (2013), pp. 157–164

    Google Scholar 

  11. R.J. Bravo, S.A. Robles, E. Muljadi, Assessing solar PV inverters’ anti-islanding protection, in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO (2014), pp. 2668–2671

    Google Scholar 

  12. A.K. Gupta, M.S. Joshi, V. Agarwal, On the control and design issues of single phase transformerless inverters for photovoltaic applications, 2014 IEEE 6th India International Conference on Power Electronics (IICPE), Kurukshetra (2014), pp. 1–6

    Google Scholar 

  13. S.B. Kjaer, J.K. Pedersen, F. Blaabjerg, A review of single-phase grid-connected inverters for photovoltaic modules, in IEEE Transactions on Industry Applications, vol. 41, no. 5, Sept–Oct 2005, pp. 1292–1306

    Google Scholar 

  14. M. Vimala, C. Chellamuthu, Harmonic analysis of multilevel inverter driven by variable speed wind electric generator, in 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Chennai (2013), pp. 409–414

    Google Scholar 

  15. S. Su, Y. Su, G. Liu, Design of main circuit and control system for connecting series and parallel interface of wind power generating unit, in 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha (2015), pp. 2780–2784

    Google Scholar 

  16. A.A. Mohamed, A.L. Haridy, A.M. Hemeida, The whale optimization algorithm based controller for PMSG wind energy generation system, in 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt (2019), pp. 438–443

    Google Scholar 

  17. G. Chen, X. Cai, Reconfigurable control for fault-tolerant of parallel converters in PMSG wind energy conversion system. IEEE Trans. Sustain. Energy 10(2), 604–614 (2019)

    Article  Google Scholar 

  18. J. Li et al., High voltage ride-through control strategy of doubly-fed induction generator based wind turbines with a series grid-side converter. Power Syst. Technol. 38(11) (2014)

    Google Scholar 

  19. K. Ma, M. Liserre, F. Blaabjerg, Reactive power influence on the thermal cycling of multi-MW wind power inverter, in IEEE Transactions on Industry Applications, vol. 49, no. 2, Mar-Apr 2013, pp. 922–930

    Google Scholar 

  20. Nityanand, A. K. Pandey, Electrical engineering aspects and future trends for PMSG turbines and power converters: a present market survey, 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India (2018), pp. 683–688

    Google Scholar 

  21. Y. Xia, K.H. Ahmed, B.W. Williams, Different torque ripple reduction methods for wind energy conversion systems using diode rectifier and boost converter, 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON (2011), pp. 729–734

    Google Scholar 

  22. V. Yaramasu, B. Wu, Predictive control of a three-level boost converter and an NPC Inverter for high-power PMSG-Based medium voltage wind energy conversion systems. IEEE Trans. Power Electron. 29(10), 5308–5322 (2014)

    Article  Google Scholar 

  23. A. Marzouki, M. Hamouda, F. Fnaiech, A review of PWM voltage source converters based industrial applications, in 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), Aachen (2015), pp. 1–6

    Google Scholar 

  24. K. Hatua, V.T. Ranganathan, A novel VSI- and CSI-Fed active-reactive induction motor drive with sinusoidal voltages and currents. IEEE Trans. Power Electron. 26(12), 3936–3947 (2011)

    Article  Google Scholar 

  25. Y. Tang, P.C. Loh, P. Wang, F.H. Choo, F. Gao, F. Blaabjerg, Generalized design of high performance shunt active power filter with output LCL filter. IEEE Trans. Ind. Electron. 59(3), 1443–1452 (2012)

    Article  Google Scholar 

  26. F.E. Lahouar, J. Ben Hadj Slama, M. Hamouda, F. Ben Mustapha, Comparative study between two and three-level topologies of grid connected photovoltaic converters, in 2014 5th International Renewable Energy Congress (IREC), Hammamet (2014), pp. 1–6

    Google Scholar 

  27. X. Fan, L. Guan, C. Xia, J. He, A passivity control strategy for VSC-HVDC connected large scale wind power, in 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC (2013), pp. 1–6

    Google Scholar 

  28. K.G. Jayanth, V. Boddapati, R.S. Geetha, Comparative study between three-leg and four-leg current-source inverter for solar PV application, in 2018 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur (2018), pp. 1–6

    Google Scholar 

  29. P. Chamarthi, N. Pragallapati, V. Agarwal, Novel 1-ϕ multilevel current source inverter for balanced/unbalanced PV sources, in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO (2014), pp. 3090–3093

    Google Scholar 

  30. W. Wang, F. Gao, L. Zhang, M. Chen, L. Zhou, Optimal switching counts modulation of H7 current source inverter, in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI (2016), pp. 1–6

    Google Scholar 

  31. T. Noguchi, Suroso, Review of novel multilevel current-source inverters with H-bridge and common-emitter based topologies, 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA (2010), pp. 4006–4011

    Google Scholar 

  32. R.A. Krishna, L.P. Suresh, A brief review on multi level inverter topologies, in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil (2016), pp. 1–6

    Google Scholar 

  33. A.K. Koshti, M.N. Rao, A brief review on multilevel inverter topologies, in 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), Pune (2017), pp. 187–193

    Google Scholar 

  34. W. McMurray, Fast response stepped-wave switching power converter circuit, U.S. Patent 3 581 212, 25 May 1971

    Google Scholar 

  35. R.H. Baker, High-voltage converter circuit, U.S. Patent 4 203 151, 13 May 1980

    Google Scholar 

  36. T.A. Meynard, H. Foch, Multi-level choppers for high voltage applications, in Proceedings of the European Conference on Power Electronics and Application, vol. 2 (1992), pp. 45–s50

    Article  Google Scholar 

  37. I.D. Pharne, Y.N. Bhosale, A review on multilevel inverter topology, in 2013 International Conference on Power, Energy and Control (ICPEC) (Sri Rangalatchum Dindigul, 2013), pp. 700–703

    Google Scholar 

  38. S.V. Brovanov, S.D. Egorov, Review of AC voltage generation systems based on multilevel converters and photovoltaic cells, in 2013 14th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Novosibirsk (2013), pp. 275–278

    Google Scholar 

  39. K. Jain, P. Chaturvedi, Matlab-based simulation & analysis of three-level SPWM inverter. Int. J. Soft Comput. Eng (IJSCE) 2(1) (2012). ISSN: 2231-2307

    Google Scholar 

  40. M. Vijeh, M. Rezanejad, E. Samadaei, K. Bertilsson, A general review of multilevel inverters based on main submodules: structural point of view. IEEE Trans. Power Electron. 34(10), 9479–9502 (2019)

    Article  Google Scholar 

  41. F.Z. Peng, A generalized multilevel inverter topology with self voltage balancing, in Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), Rome, Italy, vol. 3 (2000), pp. 2024–2031

    Google Scholar 

  42. P. Barbosa, P. Steimer, L. Meysenc, M. Winkelnkemper, J. Steinke, N. Celanovic, Active neutral-point-clamped multilevel converters, 2005 IEEE 36th Power Electronics Specialists Conference, Recife (2005), pp. 2296–2301

    Google Scholar 

  43. J. Rodriguez, J.-S. Lai, F.Z. Peng, Multilevel inverters: a survey of topologies, controls, and applications, in IEEE Transactions on Industrial Electronics, vol. 49, no. 4, Aug 2002, pp. 724–738

    Article  Google Scholar 

  44. U.R. Prasanna, A.K. Rathore, Dual three-pulse modulation-based high-frequency pulsating DC link two-stage three-phase inverter for electric/hybrid/fuel cell vehicles applications. IEEE J. Emerg. Sel. Top. Power Electron. 2(3), 477–486 (2014)

    Article  Google Scholar 

  45. D. Debnath, K. Chatterjee, Two-Stage solar photovoltaic-based stand-alone scheme having battery as energy storage element for rural deployment. IEEE Trans. Ind. Electron. 62(7), 4148–4157 (2015)

    Article  Google Scholar 

  46. Y.F. Wang, L.K. Xue, C.S. Wang, P. Wang, W. Li, Interleaved high-conversion-ratio bidirectional DC-DC converter for distributed energy-storage systems—circuit generation, analysis, and design. IEEE Trans. Power Electron. 31(8), 5547–5561 (2016)

    Article  Google Scholar 

  47. O. Ellabban, H. Abu-Rub, Z-source inverter: topology improvements review. IEEE Ind. Electron. Mag. 10(1), 6–24 (2016)

    Article  Google Scholar 

  48. L. Liu, H. Li, Y. Zhao, X. He, Z.J. Shen, 1 MHz cascaded Z-source inverters for scalable grid-interactive photovoltaic (PV) applications using GaN device, in Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 2738–2745

    Google Scholar 

  49. Y. Zhou, L. Liu, H. Li, A high-performance photovoltaic module-integrated converter (MIC) based on cascaded quasi-Z-source inverters (qZSI) using eGaN FETs. IEEE Trans. Power Electron. 28(6), 2727–2738 (2013)

    Article  Google Scholar 

  50. D. Sun, B. Ge, F.Z. Peng, H. Abu-Rub, D. Bi, Y. Liu, A new grid-connected PV system based on cascaded H-bridge quasi-Z-source inverter, in Proceedings of the 2012 IEEE International Symposium on Industrial Electronics (ISIE) (2012), pp. 951–956

    Google Scholar 

  51. Y. Fayyad, L. Ben-Brahim, Multilevel cascaded Z source inverter for PV power generation system, in Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA) (2012), pp. 1–6

    Google Scholar 

  52. Y. Liu, B. Ge, H. Abu-Rub, F.Z. Peng, A modular multilevel space vector modulation for photovoltaic quasi-Z-source cascade multilevel inverters, in Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2013), pp. 714–718

    Google Scholar 

  53. Y. Liu, B. Ge, H. Abu-Rub, F.Z. Peng, An effective control method for quasi-Z-source cascade multilevel inverter-based grid-tie single-phase photovoltaic power system. IEEE Trans. Ind. Informat. 10(1), 399–407 (2014)

    Article  Google Scholar 

  54. Y. Xue, B. Ge, F.Z. Peng, Reliability, efficiency, and cost comparisons of MW scale photovoltaic inverters, in Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE) (2012), pp. 1627–1634

    Google Scholar 

  55. S. Qu, W. Yongyu, On control strategy of Z-source inverter for grid integration of direct-driven wind power generator, in 31st Chinese Control Conference (CCC), pp. 6720–6723, 25–27 July 2012

    Google Scholar 

  56. X. Wang, D.M. Vilathgamuwa, K.J. Tseng, C.J. Gajanayake, Controller design for variable-speed permanent magnet wind turbine generators interfaced with Z-source inverter, in Proceedings of the International Conference on Power Electronics and Drive Systems (PEDS) (2009), pp. 752–757

    Google Scholar 

  57. S.M. Dehghan, M. Mohamadian, A.Y. Varjani, A new variable-speed wind energy conversion system using permanent-magnet synchronous generator and Z-source inverter. IEEE Trans. Energy Convers. 24(3), 714–724 (2009)

    Article  Google Scholar 

  58. U. Supatti, F.Z. Peng, Z-source inverter with grid connected for wind power system, in Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition (ECCE) (2009), pp. 398–403

    Google Scholar 

  59. T. Maity, H. Prasad, V. R. Babu, Study of the suitability of recently proposed quasi Z-source inverter for wind power conversion, in Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA) (2014), pp. 837–841

    Google Scholar 

  60. W.-T. Franke, M. Mohr, F.W. Fuchs, Comparison of a Z-source inverter and a voltage-source inverter linked with a DC/DC-boost-converter for wind turbines concerning their efficiency and installed semiconductor power, in Proceedings of the 2008 IEEE Power Electronics Specialists Conference (PESC) (2008), pp. 1814–1820

    Google Scholar 

  61. Y. Liu, B. Ge, F.Z. Peng, H. Abu-Rub, A.T. De Almeida, F.J.T.E. Ferreira, Quasi-Z-source inverter based PMSG wind power generation system, in Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 291–297

    Google Scholar 

  62. B.K. Ramasamy, A. Palaniappan, S.M. Yakoh, Direct-drive low-speed wind energy conversion system incorporating axial-type permanent magnet generator and Z-source inverter with sensorless maximum power point tracking controller. IET Renew. Power Gener. 7(3), 284–295 (2013)

    Article  Google Scholar 

  63. F.Z. Peng, M. Shen, K. Holland, Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles. IEEE Trans. Power Electron. 22(3), 1054–1061 (2007)

    Article  Google Scholar 

  64. S.M. Dehghan, M. Mohamadian, A. Yazdian, Hybrid electric vehicle based on bidirectional Z-source nine-switch inverter. IEEE Trans. Veh. Commun. 59(6), 2641–2653 (2010)

    Article  Google Scholar 

  65. F. Guo, L. Fu, C. Lin, C. Li, W. Choi, J. Wang, Development of an 85-kW bidirectional quasi-Z-source inverter with DC-Link feed-forward compensation for electric vehicle applications. IEEE Trans. Power Electron. 28(12), 5477–5488 (2013)

    Article  Google Scholar 

  66. P. Liu, H.P. Liu, Permanent-magnet synchronous motor drive system for electric vehicles using bidirectional Z-source inverter. IET Electr. Syst. Transp. 2(4), 178–185 (2012)

    Article  Google Scholar 

  67. Q. Lei, D. Cao, F.Z. Peng, Novel loss and harmonic minimized vector modulation for a current-fed quasi-Z-source inverter in HEV motor drive application. IEEE Trans. Power Electron. 29(3), 1344–1357 (2014)

    Google Scholar 

  68. F.Z. Peng, Z-source inverter. IEEE Trans. Ind. Appl. 39(2), 504–510 (2003)

    Article  Google Scholar 

  69. J. Rabkowski, The bidirectional Z-source inverter for energy storage application, in Proceedings of the European Conference on Power Electronics and Applications, 2–5 Sept 2007, pp. 1–10

    Google Scholar 

  70. L. Yang, D. Qiu, B. Zhang, G. Zhang, A high-performance Z-source inverter with low capacitor voltage stress and small inductance, in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, 15–17 June 2010, pp. 2169–2174

    Google Scholar 

  71. J. Anderson, F.Z. Peng, Four quasi-Z-source inverters, in Proceedings of the PESC (2008), pp. 2743–2749

    Google Scholar 

  72. M. Zhu, K. Yu, F.L. Luo, Switched inductor Z-source inverter. IEEE Trans. Power Electron. 25(8), 2150–2158 (2010)

    Article  Google Scholar 

  73. A.-V. Ho, T.-W. Chun, H.-G. Kim, Extended boost active-switched-capacitor/switched-inductor quasi-z-source inverters. IEEE Trans. Power Electron. 30(10), 5681–5690 (2015)

    Article  Google Scholar 

  74. V. Jagan, J. Kotturu, S. Das, Enhanced-boost quasi-z-source inverters with two-switched impedance networks. IEEE Trans. Ind. Electron. 64(9), 6885–6897 (2017)

    Article  Google Scholar 

  75. W. Qian, F.Z. Peng, H. Cha, Trans-z-source inverters. IEEE Trans. Power Electron. 26(12), 3453–3463 (2011)

    Article  Google Scholar 

  76. R. Strzelecki, M. Adamowicz, N. Strzelecka, W. Bury, New type T-source inverter, in Proceedigns of the CPE (2009), pp. 191–195

    Google Scholar 

  77. M. Adamowicz, LCCT-z-source inverters, in Proceedings of the EEEIC (2011), pp. 1–16

    Google Scholar 

  78. P.C. Loh, D. Li, F. Blaabjerg, Г-Z-source inverters. IEEE Trans. Power Electron. 28(11), 4880–4884 (2013)

    Article  Google Scholar 

  79. M.-K. Nguyen, Y.-C. Lim, Y.-G. Kim, TZ-source inverters. IEEE Trans. Ind. Electron. 60(12), 5686–5695 (2013)

    Article  Google Scholar 

  80. Y.P. Siwakoti, P.C. Loh, F. Blaabjerg, G.E. Town, Y-source impedance network. IEEE Trans. Power Electron. 29(7), 3250–3254 (2014)

    Article  Google Scholar 

  81. R.R. Ahrabi, M.R. Banaei, Improved Y-source DC–AC converter with continuous input current. IET Power Electron. 9(4), 801–808 (2016)

    Article  Google Scholar 

  82. A. Hakemi, M. Sanatkar-Chayjani, M. Monfared, ∆-source impedance network. IEEE Trans. Ind. Electron. 64(10), 7842–7851 (2017)

    Article  Google Scholar 

  83. M. Adamowicz, N. Strzelecka, T-source inverter. Electr. Rev. 85(10), 233–238 (2009)

    Google Scholar 

  84. M.-K. Nguyen, Y.-C. Lim, S.-J. Park, Improved trans-z-source inverter with continuous input current and boost inversion capability. IEEE Trans. Power Electron. 28(10), 4500–4510 (2013)

    Article  Google Scholar 

  85. Z. Aleem, M. Hanif, Operational analysis of improved Г-Z-Source inverter with clamping diode and its comparative evaluation. IEEE Trans. Ind. Electron. 64(12), 9191–9200 (2017)

    Article  Google Scholar 

  86. H. Liu, Y. Li, Z. Zhou, W. Wang, D. Xu, A family of low-spikes, high-efficiency Y-source inverters. IEEE Trans. Ind. Electron.

    Google Scholar 

  87. H. Liu et al., High step-up Y-source inverter with reduced DC-link voltage spikes. IEEE Trans. Power Electron. 34(6), 5487–5499 (2019)

    Article  Google Scholar 

  88. P. Fang Zheng, S. Miaosen, Q. Zhaoming, Maximum boost control of the Z-source inverter. IEEE Trans. Power Electron. 20(4), 833–838 (2005)

    Article  Google Scholar 

  89. S. Miaosen, W. Jin, A. Joseph, P. Fang Zheng, L.M. Tolbert, D.J. Adams, Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE Trans. Ind. Appl. 42(3), 770–778 (2006)

    Google Scholar 

  90. J.W. Jung, A. Keyhani, Control of a fuel cell based Z-source converter. IEEE Trans. Energy Convers. 22(2), 467–476 (2007)

    Article  Google Scholar 

  91. H. Rostami, D.A. Khaburi, A new method for minimizing of voltage stress across devices in Z-source inverter, in 2011 2nd Power Electronics, Drive Systems and Technologies Conference (2011), pp. 610–614

    Google Scholar 

  92. M.S. Diab, A.A. Elserougi, A.M. Massoud, A.S. Abdel-Khalik, S. Ahmed, A pulse width modulation technique for high-voltage gain operation of three-phase Z-source inverters. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 521–533 (2016)

    Article  Google Scholar 

  93. M. Shen, F.Z. Peng, Operation modes and characteristics of the Z-source inverter with small inductance or low power factor. IEEE Trans. Ind. Electron. 55(1), 89–96 (2008)

    Article  Google Scholar 

  94. Y. Tang, S. Xie, C. Zhang, Z. Xu, Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability. IEEE Trans. Power Electron. 24(2), 409–415 (2009)

    Article  Google Scholar 

  95. J. Wei, Y. Tang, S. Xie, Grid-connected PV system based on the series Z-source inverter, in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, ICIEA (2010), pp. 532–537

    Google Scholar 

  96. Y. Zhu, M. Chen, X. Lee, Y. Tsutomu, A novel quasi-resonant soft-switching Z-source inverter, in Proceedings of the IEEE International Conference Power and Energy (PECon), 2–5 Dec 2012, pp. 292–297

    Google Scholar 

  97. A.S. Khlebnikov, S.A. Kharitonov, Application of the Z-source converter for aircraft power generation systems, in Proceedings of the 9th International Workshop and Tutorials on Electron Devices and Materials, EDM, 1–5 July 2008, pp. 211–215

    Google Scholar 

  98. E.C. Dos Santos, J. H. G. Muniz, E. P. X. P. Filho, and E. R. C. Da Silva, Dc-ac three-phase fourwire Z-source converter with hybrid PWM strategy, in Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society, IECON, Nov. 7–10 (2010), pp. 409–414

    Google Scholar 

  99. A.S. Khlebnikov, S.A. Kharitonov, P.A. Bachurin, A.V. Geist, D.V. Makarov, Modeling of dual Z-source inverter for aircraft power generation, in Proceedings of the International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), 30 June 2011–4 July 2011, pp. 373–376

    Google Scholar 

  100. P.A. Bachurin, D.V. Makarov, A.V. Geist, M.V. Balagurov, D.A. Shtein, Z-source inverter with neutral point, in Proceedings of the 14th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), 1–5 July 2013, pp. 255–258

    Google Scholar 

  101. V. Erginer, M.H. Sarul, Modified reduced common mode current modulation techniques for Z-Source inverter used in photovoltaic systems, in Proceedings of the 4th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 13–14 Feb 2013, pp. 459–464

    Google Scholar 

  102. P.E.P. Ferraz, F. Bradaschia, M.C. Cavalcanti, F.A.S. Neves, G.M.S. Azevedo, A modified Z-source inverter topology for stable operation of transformerless photovoltaic systems with reduced leakage currents, in Proceedings of the 2011 Brazilian Power Electronics Conference (COBEP), 11–15 Sept 2011, pp. 615–622

    Google Scholar 

  103. S. Jiang, F.Z. Peng, Transmission-line theory based distributed Z-source networks for power conversion, in Proceedings of the 26th Annual IEEE Applied Power Electronics Conf. Exposition (APEC), 6–11 Mar 2011, pp. 1138–1145

    Google Scholar 

  104. F. Gao, P.C. Loh, F. Blaabjerg, C.J. Gajanayake, Operational analysis and comparative evaluation of embedded Z-Source inverters, in Proceedings of the IEEE Power Electronics Specialists Conference, PESC, 15–19 June 2008, pp. 2757–2763

    Google Scholar 

  105. M. Zhu, K. Yu, F.L. Luo, Topology analysis of a switched-inductor Z-source inverter, in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, 15–17 June 2010, pp. 364–369

    Google Scholar 

  106. M. Ismeil, M. Orabi, R. Kennel, O. Ellabban, H. Abu-Rub, Experimental studies on a three phase improved switched Z-source inverter, in Proceedings of the Applied Power Electronics Conference and Exposition, APEC, 16–20 Mar 2014, pp. 1248–1254

    Google Scholar 

  107. M.-K. Nguyen, Y.-C. Lim, G.-B. Cho, Switched-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 26(11), 3183–3191 (2011)

    Article  Google Scholar 

  108. K. Deng, J. Zheng, J. Mei, Novel switched inductor quasi-Z-source inverter. J. Power Electron. 14(1), 11–21 (2014)

    Article  Google Scholar 

  109. F. Ahmed, H. Cha, S. Kim, H. Kim, Switched-coupled-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 31(2), 1241–1254 (2016)

    Article  Google Scholar 

  110. A. Ho, T. Chun, H.T. Kim, Extended boost active-switched-capacitor/switched-inductor quasi-Z-source inverters. IEEE Trans. Power Electron. 30(10), 568–5690 (2015)

    Article  Google Scholar 

  111. M.-K. Nguyen, Y.-C. Lim, J.-H. Choi, Two switched-inductor quasi-Z-source inverters. IET Power Electron. 5(7), 1017–1025 (2012)

    Article  Google Scholar 

  112. K. Deng, F. Mei, J. Mei, J. Zheng, G. Fu, An extended switched-inductor quasi-Z-source inverter. J. Electr. Eng. Technol. 9(2), 541–549 (2014)

    Article  Google Scholar 

  113. M. Zhu, D. Li, P.C. Loh, F. Blaabjerg, Tapped-inductor Z-Source inverters with enhanced voltage boost inversion abilities, in Proceedings of the 2nd IEEE International Conference on Sustainable Energy Technologies, ICSET, 6–9 Dec 2010, pp. 1–6

    Google Scholar 

  114. Y. Zhou, W. Huang, J. Zhao, P. Zhao, Tapped inductor quasi-Z-source inverter, in Proceedings of the 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 5–9 Feb 2012, pp. 1625–1630

    Google Scholar 

  115. C.J. Gajanayake, F.-L. Luo, H.B. Gooi, P.L. So, L.K. Siow, Extended-boost Z-source inverters. IEEE Trans. Power Electron. 25(10), 2642–2652 (2010)

    Article  Google Scholar 

  116. D. Vinnikov, I. Roasto, T. Jalakas, R. Strzelecki, M. Adamowicz, Analytical comparison between capacitor assisted and diode assisted cascaded quasi-Z-source inverters. Electr. Rev. 88(1a), 212–217 (2012)

    Google Scholar 

  117. D. Vinnikov, I. Roasto, T. Jalakas, S. Ott, Extended boost quasi-Z-source inverters: possibilities and challenges. Electron. Elect. Eng. 112(6), 51–56 (2011)

    Google Scholar 

  118. Y.P. Siwakoti, F.Z. Peng, F. Blaabjerg, P.C. Loh, G.E. Town, Impedance-source networks for electric power conversion Part I: a topological review. IEEE Trans. Power Electron. 30(2), 699–716 (2015)

    Article  Google Scholar 

  119. P.C. Loh, F. Blaabjerg, C.P. Wong, Comparative evaluation of pulse width modulation strategies for Z-source neutral-point-clamped inverter. IEEE Trans. Power Electron. 22(3), 1005–1013 (2007)

    Article  Google Scholar 

  120. P.C. Loh, S.W. Lim, F. Gao, F. Blaabjerg, Three-level Z-source inverters using a single LC impedance network. IEEE Trans. Power Electron. 22(2), 706–711 (2007)

    Article  Google Scholar 

  121. O. Husev, C. Roncero-Clemente, E. Romero-Cadaval, D. Vinnikov, S. Stepenko, Single phase three-level neutral-point-clamped quasi-Z-source inverter. IET Power Electron. 8(1), 1–10 (2015)

    Article  Google Scholar 

  122. W. Mo, P.C. Loh, F. Blaabjerg, P. Wang, Trans-Z-source and C-Z-source neutral-point clamped inverters. IET Power Electron. 8(3), 371–377 (2015)

    Article  Google Scholar 

  123. F. Gao, P.C. Loh, F. Blaabjerg, R. Teodorescu, D.M. Vilathgamuwa, Five-level Z-source diode-clamped inverter. IET Power Electron. 3(4), 500–510 (2010)

    Article  Google Scholar 

  124. B.K. Chaithanya, A. Kirubakaran, A novel four level cascaded Z-source inverter, in Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 16–19 Dec 2014, pp. 1–5

    Google Scholar 

  125. Y. Liu, B. Ge, H. Abu-Rub, F.Z. Peng, An effective control method for quasi-Z-source cascade multilevel inverter-based grid-tie singlephase photovoltaic power system. IEEE Trans. Ind. Inform. 10(1), 399–407 (2014)

    Article  Google Scholar 

  126. S.M. Dehghan, M. Mohamadian, A. Yazdian, Hybrid electric vehicle based on bidirectional Z-source nine-switch inverter. IEEE Trans. Veh. Technol. 59(6), 2641–2653 (2010)

    Article  Google Scholar 

  127. Y. Liu, H. Abu-Rub, B. Ge, F. Blaabjerg, O. Ellabban, P.C. Loh, Impedance Source Power Electronic Converters (Wiley, Hoboken, NJ, 2016)

    Book  Google Scholar 

  128. S. Jiang, D. Cao, F. Z. Peng, High frequency transformer isolated Z-source inverters, in Proceedings of the 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2011), pp. 442–449

    Google Scholar 

  129. L. Pan, L-Z-source inverter. IEEE Trans. Power Electron. 29(12), 6534–6543 (2014)

    Article  Google Scholar 

  130. H. Liu, et al., Extended quasi-Y-source inverter with suppressed inrush and leakage effects, in IET Power Electronics, vol. 12, no. 4, 4 Oct 2019, pp. 719–728

    Article  Google Scholar 

  131. M.A. Briere, GaN based power conversion: a new era in power electronics, in Proceedings of the PCIM Europe Conference (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongpeng Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Zhou, Z., Li, Y., Wu, W., Jiang, J., Shi, E. (2020). Research Status and Development. In: Impedance Source Inverters. Springer, Singapore. https://doi.org/10.1007/978-981-15-2763-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2763-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2762-3

  • Online ISBN: 978-981-15-2763-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics