Skip to main content

The Impact of Different Feature Scaling Methods on Intrusion Detection for in-Vehicle Controller Area Network (CAN)

  • Conference paper
  • First Online:
Book cover Advances in Cyber Security (ACeS 2019)

Abstract

Numerous security researchers have a growing interest in the vulnerabilities of the in-vehicle Controller Area Network (CAN) bus system to cyber-attacks. The adversaries can leverage these vulnerabilities in manipulating vehicle functions and harming the drivers’ safety. Some security mechanisms proposed for CAN bus in detecting anomalies have favoured over the one-class classification, where it constructs a decision boundary from normal instances. Nevertheless, the accuracy performance of the classifier is highly influenced by the data representation. Judging from this fact, this paper analyses the advantage of utilizing different feature scaling technique as in to obtain higher classification accuracy of the classifier algorithms. To serve this purpose, the CAN bus datasets in this paper are scaled using standardization, min-max, and quantile, and are evaluated using one-class classifier model used in automotive CAN bus. The results exhibit that integrating different feature scaling techniques could greatly enhance the classification accuracy of the classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakiz, F., Sen, S.: A survey of attacks and detection mechanisms on intelligent trans-portation systems: VANETs and IoV. Ad Hoc Netw. 61, 33–50 (2017)

    Article  Google Scholar 

  2. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat USA (2015)

    Google Scholar 

  3. Koscher, K., et al.: Experimental security analysis of a modern automobile. In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 447–462 (2010)

    Google Scholar 

  4. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks – practical examples and selected short-term countermeasures. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 235–248. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87698-4_21

    Chapter  Google Scholar 

  5. Hoppe, T., Kiltz, S., Dittmann, J.: Applying intrusion detection to automotive it-early insights and remaining challenges. J. Inform. Assur. Secur. (JIAS) 4(6), 226–235 (2009)

    Google Scholar 

  6. Martinelli, F., Mercaldo, F., Nardone, V., Santone, A.: Car hacking identification through fuzzy logic algorithms. In: IEEE International Conference on Fuzzy Systems, Naples (2017)

    Google Scholar 

  7. Tomlinson, A., Bryans, J., Shaikh, S.A.: Using a one-class compound classifier to detect in-vehicle network attacks. In GECCO 2018 Companion: Genetic and Evolutionary Computation Conference Companion. ACM, Kyoto (2018). https://doi.org/10.1145/3205651.3208223

  8. Weber, M., Klug, S., Sax, E., Zimmer, B.: Embedded hybrid anomaly detection for automotive CAN communication (2018)

    Google Scholar 

  9. Xing, Y., Lv, C., Wang, H., Cao, D. Recognizing driver braking intention with vehicle data using unsupervised learning methods (2017)

    Google Scholar 

  10. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-physical intrusion detection for vehicles using deep learning. IEEE Access 6, 3491–3508 (2017)

    Article  Google Scholar 

  11. Nawi, N.M., et al.: The effect of pre-processing techniques and optimal parameters selection on back propagation neural networks. Int. J. Adv. Sci. Eng. Inform. Technol. 7(3), 770–777 (2017)

    Article  Google Scholar 

  12. Kumar, D.A., Venugopalan, S.: The effect of normalization on intrusion detection classifiers (Naïve Bayes and J48). Int. J. Future Revolut. Comput. Sci. Commun. Eng. 3, 60–64 (2017)

    Google Scholar 

  13. Kang, M.J., Kang, J.W.: Intrusion detection system using deep neural network for in-vehicle network security. PLoS One 11(6), e0155781 (2016)

    Article  Google Scholar 

  14. Wasicek, A., Weimerskirch, A.: Recognizing manipulated electronic control units (No. 2015-01-0202). SAE Technical Paper (2015)

    Google Scholar 

  15. Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control network data with long short-term memory networks. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 130–139 (2016)

    Google Scholar 

  16. Pan, M., Zhang, J.: Quantile normalization for combining gene-expression da-tasets. Biotechnol. Biotechnol. Equip. 32(3), 751–758 (2018)

    Article  MathSciNet  Google Scholar 

  17. Upender, B.P., Dean, A.G.: Variability of CAN network performance. In: Proceedings of the 3rd International CAN Conference ICC (1996)

    Google Scholar 

  18. Taylor, A., Japkowicz, N., Leblanc, S.: Frequency-based anomaly detection for the automotive CAN bus. In: 2015 World Congress on Industrial Control Systems Security (WCICSS), pp. 45–49. IEEE (2015)

    Google Scholar 

  19. Lokman, S.F., Othman, A.T., Bakar, M.H.A., Razuwan, R.: Stacked sparse autoencoders-based outlier discovery for in-vehicle controller area network (CAN). Int. J. Eng. Technol. 7(4.33), 375–380 (2018). https://doi.org/10.14419/ijet.v7i4.33.26078

    Article  Google Scholar 

  20. Hicks, S.C., Okrah, K., Paulson, J.N., Quackenbush, J., Irizarry, R.A., Bravo, H.C.: Smooth quantile normalization. Biostatistics 19(2), 185–198 (2017)

    Article  MathSciNet  Google Scholar 

  21. Hansen, K.D., Irizarry, R.A., Wu, Z.: Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13(2), 204–216 (2012)

    Article  Google Scholar 

  22. Monot, A., Navet, N., Bavoux, B.: Impact of clock drifts on CAN frame response time distributions. In: ETFA2011, pp. 1–4. IEEE (2011)

    Google Scholar 

  23. Potter, K., Hagen, H., Kerren, A., Dannenmann, P.: Methods for presenting statistical information: the box plot. Vis. Large Unstr. Data Sets 4, 97–106 (2006)

    Google Scholar 

  24. Moya, M.M., Hush, D.R.: Network constraints and multi-objective optimization for one-class classification. Neural Netw. 9(3), 463–474 (1996)

    Article  Google Scholar 

  25. Ghafoori, Z., Erfani, S.M., Rajasegarar, S., Bezdek, J.C., Karunasekera, S., Leckie, C.: Efficient unsupervised parameter estimation for one-class support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 5057–5070 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti-Farhana Lokman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lokman, SF., Othman, A.T., Bakar, M.H.A., Musa, S. (2020). The Impact of Different Feature Scaling Methods on Intrusion Detection for in-Vehicle Controller Area Network (CAN). In: Anbar, M., Abdullah, N., Manickam, S. (eds) Advances in Cyber Security. ACeS 2019. Communications in Computer and Information Science, vol 1132. Springer, Singapore. https://doi.org/10.1007/978-981-15-2693-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2693-0_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2692-3

  • Online ISBN: 978-981-15-2693-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics